压电1
钙
机械敏感通道
平衡
生物物理学
化学
钙代谢
钙泵
细胞生物学
红细胞
离子通道
生物
生物化学
酶
受体
ATP酶
有机化学
出处
期刊:Annual Review of Physiology
[Annual Reviews]
日期:2024-10-30
标识
DOI:10.1146/annurev-physiol-022724-105119
摘要
Calcium ions mediate the volume homeostasis of human red blood cells (RBCs) in the circulation. The mechanism by which calcium ions affect RBC hydration states always follows the same sequence. Deformation of RBCs traversing capillaries briefly activates mechanosensitive PIEZO1 channels, allowing Ca2+ influx down its steep inward gradient transiently overcoming the calcium pump and elevating [Ca2+]i. Elevated [Ca2+]i activates the Ca2+-sensitive Gardos channels, inducing KCl loss and cell dehydration, a sequence operated with infinite variations in vivo and under experimental conditions. The selected health and disease themes for this review focus on landmark experimental results that led to the development of highly constrained models of the circulatory changes in RBCs homeostasis. Based on model predictions, a new perspective emerged, pointing to PIEZO1 dysfunction as the main trigger in the formation of the profoundly dehydrated irreversible sickle cells, the main pathogenic participants in vaso-occlusion, the root cause of sickle cell disease.
科研通智能强力驱动
Strongly Powered by AbleSci AI