亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Artificial Neural Networks in Predicting the Thermal Performance of Heat Pipes

人工神经网络 热的 计算机科学 人工智能 工程类 热力学 物理
作者
Thomas Siqueira Pereira,Pedro Leineker Ochoski Machado,Bárbara Dora Ross Veitía,Felipe Mercês Biglia,PAULO HENRIQUE DIAS DOS SANTOS,Yara de Souza Tadano,Hugo Valadares Siqueira,Thiago Antonini Alves
出处
期刊:Energies [MDPI AG]
卷期号:17 (21): 5387-5387
标识
DOI:10.3390/en17215387
摘要

The loss of energy by heat is a common problem in almost all areas of industry, and heat pipes are essential to increase efficiency and reduce energy waste. However, in many cases, they have complex theoretical equations with high percentages of error, limiting their development and causing dependence on empirical methods that generate a waste of time and material, resulting in significant expenses and reducing the viability of their use. Thus, Artificial Neural Networks (ANNs) can be an excellent option to facilitate the construction and development of heat pipes without knowledge of the complex theory behind the problem. This investigation uses experimental data from previous studies to evaluate the ability of three different ANNs to predict the thermal performance of heat pipes with different capillary structures, each of them in various configurations of the slope, filling ratio, and heat load. The goal is to investigate results in as many different scenarios as possible to clearly understand the networks’ capacity for modeling heat pipes and their operating parameters. We chose two classic ANNs (the most used, Multilayer Perceptron (MLP) network, and the Radial Basis Function (RBF) network) and the Extreme Learning Machine (ELM), which has not yet been applied to heat pipes studies. The ELM is an Unorganized Machine with a fast training process and a simple codification. The ANN results were very close to the experimental ones, showing that ANNs can successfully simulate the thermal performance of heat pipes. Based on the RMSE (error metric being reduced during the training step), the ELM presented the best results (RMSE = 0.384), followed by MLP (RMSE = 0.409), proving their capacity to generalize the problem. These results show the importance of applying different ANNs to evaluate the system deeply. Using ANNs in developing heat pipes is an excellent option for accelerating and improving the project phase, reducing material loss, time, and other resources.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
15秒前
计划明天炸地球完成签到,获得积分10
21秒前
阳光大山完成签到 ,获得积分10
33秒前
34秒前
稿子哥发布了新的文献求助30
37秒前
38秒前
41秒前
啦啦啦完成签到 ,获得积分10
44秒前
程乾发布了新的文献求助10
48秒前
不知道叫个啥完成签到 ,获得积分10
49秒前
传奇3应助程乾采纳,获得10
54秒前
小蘑菇应助稿子哥采纳,获得10
57秒前
59秒前
坚强的白菜完成签到,获得积分10
1分钟前
1分钟前
东风徐来完成签到,获得积分10
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
wearelulu完成签到,获得积分10
1分钟前
xiongyh10完成签到,获得积分10
1分钟前
1分钟前
赘婿应助青云冰城采纳,获得10
1分钟前
昵称完成签到,获得积分0
1分钟前
独特的高山完成签到 ,获得积分10
1分钟前
LMF完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
小二郎应助彭医生采纳,获得10
2分钟前
稿子哥发布了新的文献求助10
2分钟前
NattyPoe发布了新的文献求助10
2分钟前
ohwhale完成签到 ,获得积分10
2分钟前
annie完成签到,获得积分10
2分钟前
Orange应助稿子哥采纳,获得10
2分钟前
InsanityK发布了新的文献求助30
2分钟前
Ava应助jilgy采纳,获得10
2分钟前
Jeneration完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5880480
求助须知:如何正确求助?哪些是违规求助? 6573067
关于积分的说明 15689933
捐赠科研通 5000198
什么是DOI,文献DOI怎么找? 2694219
邀请新用户注册赠送积分活动 1636076
关于科研通互助平台的介绍 1593458