亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bubble collapse patterns recognition and flow field prediction based on machine learning

物理 气泡 机械 流量(数学) 领域(数学) 数学 纯数学
作者
Hao Chen,Shaofei Ren,Shi-Min Li,Shuai Zhang,Guo-Fei Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8) 被引量:1
标识
DOI:10.1063/5.0218482
摘要

A machine learning method is proposed to predict the collapse patterns and flow field state of underwater explosion bubbles subjected to the vertical sidewall and free surface, which can overcome the limitations of high costs of traditional experimental tests and long computation times of numerical simulations. The dataset was obtained by the boundary element method, including the cases of the bubble with different buoyancy parameters at different distances from the free surface and vertical sidewall. Due to the strong geometric nonlinearity of the bubble influenced by boundary, three classification models are adopted to identify the collapse patterns of bubbles, which are support vector machines, K nearest neighbor, and decision tree. Meanwhile, an ensemble learning (EL) model based on the three classification models is adopted to enhance the prediction accuracy. Furthermore, three regression models, which are deep neural network (DNN), extreme learning machine (ELM), and random forest (RF), were adopted and compared to predict flow field information around the bubble. The results show that EL exhibits better robustness to the distribution and proportion of samples when identifying collapse patterns. Meanwhile, compared with ELM and RF, DNN demonstrates stronger performance in capturing nonlinear relationships, especially in regions where the bubble curvature changes abruptly. Moreover, a learning rate decay strategy is proposed to effectively suppress the phenomenon of loss oscillation in the training process of DNN based on adaptive activation functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小波波完成签到,获得积分10
1秒前
3秒前
义气幼珊完成签到 ,获得积分10
4秒前
EED完成签到 ,获得积分10
4秒前
9秒前
10秒前
头孢西丁完成签到 ,获得积分10
12秒前
就是发布了新的文献求助10
13秒前
CipherSage应助WY采纳,获得10
14秒前
迷你的水绿完成签到 ,获得积分10
15秒前
木子水告完成签到,获得积分10
17秒前
17秒前
呵呵完成签到,获得积分10
21秒前
信封完成签到 ,获得积分10
22秒前
星辰大海应助科研通管家采纳,获得30
22秒前
嗯哼应助科研通管家采纳,获得20
22秒前
嗯哼应助科研通管家采纳,获得20
22秒前
嗯哼应助科研通管家采纳,获得40
22秒前
华仔应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
林攸之发布了新的文献求助10
22秒前
ZhaoPeng完成签到,获得积分10
26秒前
tina300完成签到,获得积分20
31秒前
希望天下0贩的0应助卷清采纳,获得10
32秒前
32秒前
Lucas应助sisyphus采纳,获得10
35秒前
WY发布了新的文献求助10
36秒前
43秒前
ZFW完成签到 ,获得积分10
43秒前
缓慢青旋完成签到,获得积分10
44秒前
44秒前
迷路的问儿应助cc采纳,获得10
45秒前
sisyphus发布了新的文献求助10
46秒前
缓慢青旋发布了新的文献求助10
48秒前
51秒前
HUO完成签到 ,获得积分10
54秒前
诚心惜海发布了新的文献求助30
55秒前
研友_yLpQrn完成签到,获得积分10
56秒前
填充物完成签到 ,获得积分10
58秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466753
求助须知:如何正确求助?哪些是违规求助? 3059555
关于积分的说明 9066885
捐赠科研通 2750012
什么是DOI,文献DOI怎么找? 1508902
科研通“疑难数据库(出版商)”最低求助积分说明 697115
邀请新用户注册赠送积分活动 696896