Radiopharmaceutical cocktails have been developed over the years to treat cancer. Cocktails of agents are attractive because 1 radiopharmaceutical is unlikely to have the desired therapeutic effect because of nonuniform uptake by the targeted cells. Therefore, multiple radiopharmaceuticals targeting different receptors on a cell is warranted. However, past implementations in vivo have not met with convincing results because of the absence of optimization strategies. Here we present artificial intelligence (AI) tools housed in a new version of our software platform, MIRDcell V4, that optimize a cocktail of radiopharmaceuticals by minimizing the total disintegrations needed to achieve a given surviving fraction (SF) of tumor cells.