Rapid Discovery of Gas Response in Materials Via Density Functional Theory and Machine Learning

密度泛函理论 灵敏度(控制系统) 硫化氢 机器学习 计算机科学 生物系统 材料科学 化学 计算化学 工程类 电子工程 生物 冶金 硫黄
作者
Shasha Gao,Yongchao Cheng,Chen Lü,Sheng Huang
出处
期刊:Energy & environmental materials [Wiley]
被引量:2
标识
DOI:10.1002/eem2.12816
摘要

In this study, a framework for predicting the gas‐sensitive properties of gas‐sensitive materials by combining machine learning and density functional theory (DFT) has been proposed. The framework rapidly predicts the gas response of materials by establishing relationships between multisource physical parameters and gas‐sensitive properties. In order to prove its effectiveness, the perovskite Cs 3 Cu 2 I 5 has been selected as the representative material. The physical parameters before and after the adsorption of various gases have been calculated using DFT, and then a machine learning model has been trained based on these parameters. Previous studies have shown that a single physical parameter alone is not enough to accurately predict the gas sensitivity of materials. Therefore, a variety of physical parameters have been selected for machine learning, and the final machine learning model achieved 92% accuracy in predicting gas sensitivity. It is important to note that although there have been no previous reports on the response of Cs 3 Cu 2 I 5 to hydrogen sulfide, the resulting model predicts the gas response of H 2 S; it is subsequently confirmed experimentally. This method not only enhances the understanding of the gas sensing mechanism, but also has a universal nature, making it suitable for the development of various new gas‐sensitive materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
二牛发布了新的文献求助10
刚刚
刚刚
1秒前
1秒前
2秒前
fanicky发布了新的文献求助10
3秒前
火花完成签到,获得积分10
3秒前
1335804518完成签到 ,获得积分10
3秒前
星星轨迹完成签到,获得积分10
3秒前
研友_VZG7GZ应助和谐晓啸采纳,获得10
4秒前
demon应助芋鱼予郁采纳,获得10
4秒前
4秒前
5秒前
5秒前
完美世界应助QIAO采纳,获得10
5秒前
科研通AI2S应助嵩嵩采纳,获得10
6秒前
金山完成签到,获得积分10
6秒前
彩色的电脑完成签到,获得积分10
6秒前
serein完成签到,获得积分10
6秒前
7秒前
青岚发布了新的文献求助10
7秒前
Xiaoxiao应助王一采纳,获得10
8秒前
拿云发布了新的文献求助30
8秒前
1335804518发布了新的文献求助10
9秒前
9秒前
shizi发布了新的文献求助10
9秒前
9秒前
呆呆发布了新的文献求助10
10秒前
10秒前
sugar发布了新的文献求助10
11秒前
wwww完成签到 ,获得积分10
11秒前
宇宙昊完成签到,获得积分10
11秒前
爆米花应助serein采纳,获得10
12秒前
伏坎完成签到,获得积分20
12秒前
Jasper应助完美夜白采纳,获得10
13秒前
善学以致用应助guyuefanxing采纳,获得10
13秒前
shiningsun31发布了新的文献求助10
13秒前
领导范儿应助敏感的铃铛采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
Orange应助juice采纳,获得10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951344
求助须知:如何正确求助?哪些是违规求助? 3496706
关于积分的说明 11083953
捐赠科研通 3227150
什么是DOI,文献DOI怎么找? 1784304
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801102