亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effects of AI Affordances on Student Engagement in EFL Classrooms: A Structural Equation Modelling and Latent Profile Analysis

结构方程建模 功能可见性 数学教育 心理学 计算机科学 认知心理学 机器学习
作者
Jinfen Xu,Juan Li
出处
期刊:European Journal of Education [Wiley]
标识
DOI:10.1111/ejed.12808
摘要

ABSTRACT Various AI technologies have been extensively introduced in language learning, showing positive impacts on students' learning, especially on their classroom‐based engagement. Yet, AI's comprehensive affordances as well as influences across different cohorts of student engagement remain underexplored. Given this, the current study, employing structural equation modelling (SEM), delineated the factor structures and predictive relationships of AI affordances and student engagement. Besides, to clarify the variations across different engagement subgroups, the study also explored latent profiles of student engagement and their moderating effects through latent profile analysis (LPA). SEM and LPA were conducted using AMOS 23 and Mplus 8, respectively. The participants comprised 408 undergraduate students from various universities in China, who have engaged in English as a Foreign Language (EFL) learning within AI‐empowered classroom environments. Factor analysis indicated that both AI affordances and student engagement exhibited two second‐order factor structures. AI affordances were categorised into four dimensions: convenience, interactivity, personalisation and social presence. Student engagement was also divided into four dimensions: cognitive, behavioural, emotional and social engagement. Additionally, AI affordances significantly affected student engagement, with this impact being moderated by different student engagement profiles. Student engagement was segmented into three sub‐groups: non/low engagement, high engagement and moderate engagement. Therein, AI affordances showed a notable effect on the non‐/low engagement group. These findings provide a solid foundation for future research in the integration of AI technologies with language learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
32秒前
积极的尔白完成签到 ,获得积分10
1分钟前
无花果应助我是站长才怪采纳,获得10
1分钟前
wxyinhefeng完成签到 ,获得积分10
1分钟前
李健应助科研通管家采纳,获得10
1分钟前
英姑应助我是站长才怪采纳,获得10
1分钟前
1分钟前
1分钟前
闪闪的谷梦完成签到 ,获得积分10
1分钟前
活泼莫英发布了新的文献求助10
2分钟前
2分钟前
埃特纳氏完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
汉德萌多林完成签到,获得积分10
4分钟前
4分钟前
张琦完成签到 ,获得积分10
4分钟前
我是站长才怪应助sarmad采纳,获得10
4分钟前
KY Mr.WANG完成签到,获得积分10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
llllly完成签到,获得积分10
5分钟前
6分钟前
6分钟前
凌霄同学完成签到,获得积分20
6分钟前
凌霄同学发布了新的文献求助30
6分钟前
Orange应助毛123采纳,获得10
6分钟前
7分钟前
yutang完成签到 ,获得积分10
7分钟前
7分钟前
习月阳完成签到,获得积分10
7分钟前
菲莳完成签到 ,获得积分10
7分钟前
7分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265472
求助须知:如何正确求助?哪些是违规求助? 2905543
关于积分的说明 8334024
捐赠科研通 2575826
什么是DOI,文献DOI怎么找? 1400135
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532