Enhanced Implicit Sentiment Understanding With Prototype Learning and Demonstration for Aspect-Based Sentiment Analysis

情绪分析 计算机科学 人工智能 数据科学 自然语言处理 认知科学 心理学
作者
Huizhe Su,Xinzhi Wang,Jinpeng Li,Shaorong Xie,Xiangfeng Luo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (5): 5631-5646 被引量:1
标识
DOI:10.1109/tcss.2024.3368171
摘要

In the field of social computing, the task of aspect-based sentiment analysis (ABSA) aims to classify the sentiment polarity of a given aspect in a sentence. The absence of explicit opinion words in the implicit aspect sentiment expressions poses a greater challenge for capturing their sentiment features in the reviews from social media. Many recent efforts use dependency trees or attention mechanisms to model the association between the aspect and other contextual words. However, dependency tree-based methods are inefficient in constructing valuable associations for sentiment classification due to the lack of explicit opinion words. In addition, the use of attention mechanisms to obtain global semantic information easily leads to an undesired focus on irrelevant words that may have sentiments but are not directly related to the specific aspect. In this article, we propose a novel prototype-based demonstration (PD) model for the ABSA task, which contains prototype learning and PD stages. In the prototype learning stage, we employ mask-aware attention to capture the global sentiment feature of aspect and learn sentiment prototypes through contrastive learning. This allows us to acquire comprehensive central semantics of the sentiment polarity that contains the implicit sentiment features. In the PD stage, to provide explicit guidance for the latent knowledge within the T5 model, we utilize prototypes similar to the aspect sentiment as the neural demonstration. Our model outperforms others with a 1.68%/0.28% accuracy gain on the Laptop/Restaurant datasets, especially in the ISE slice, showing improvements of 1.17%/0.26%. These results confirm the superiority of our PD-ABSA in capturing implicit sentiment and improving classification performance. This provides a solution for implicit sentiment classification in social computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑一笑完成签到 ,获得积分10
1秒前
无花果应助q792309106采纳,获得10
1秒前
qq发布了新的文献求助20
2秒前
您多笑笑完成签到,获得积分20
2秒前
3秒前
隐形曼青应助weske采纳,获得10
4秒前
bofu发布了新的文献求助10
4秒前
5秒前
丰那个丰发布了新的文献求助10
5秒前
5秒前
桃紫完成签到,获得积分10
6秒前
8秒前
勤劳小海豚完成签到,获得积分10
9秒前
zxh发布了新的文献求助10
10秒前
bofu发布了新的文献求助10
10秒前
JaneChen发布了新的文献求助10
11秒前
13秒前
13秒前
zzm发布了新的文献求助10
14秒前
lalala发布了新的文献求助10
17秒前
科研通AI2S应助方知采纳,获得10
19秒前
20秒前
22秒前
研友_Zr2mxZ完成签到,获得积分10
22秒前
科目三应助Suu采纳,获得10
22秒前
23秒前
852应助zzm采纳,获得10
23秒前
可爱的函函应助郑小七采纳,获得10
23秒前
慕青应助丰那个丰采纳,获得10
24秒前
宋娣关注了科研通微信公众号
24秒前
bofu发布了新的文献求助10
25秒前
KK关闭了KK文献求助
25秒前
坦率的高烽完成签到,获得积分10
26秒前
27秒前
27秒前
27秒前
28秒前
bofu发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
31秒前
32秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163