Underwater small target detection under YOLOv8-LA model

计算机科学 水下 卷积神经网络 人工智能 卷积(计算机科学) 计算 特征提取 模式识别(心理学) 采样(信号处理) 深度学习 领域(数学) 数据挖掘 人工神经网络 计算机视觉 算法 地质学 海洋学 滤波器(信号处理) 数学 纯数学
作者
Shaolin Qu,Can Cui,Jiale Duan,Yongling Lu,Zilong Pang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66950-w
摘要

Abstract In the realm of marine environmental engineering, the swift and accurate detection of underwater targets is of considerable significance. Recently, methods based on Convolutional Neural Networks (CNN) have been applied to enhance the detection of such targets. However, deep neural networks usually require a large number of parameters, resulting in slow processing speed. Meanwhile, existing methods present challenges in accurate detection when facing small and densely arranged underwater targets. To address these issues, we propose a new neural network model, YOLOv8-LA, for improving the detection performance of underwater targets. First, we design a Lightweight Efficient Partial Convolution (LEPC) module to optimize spatial feature extraction by selectively processing input channels to improve efficiency and significantly reduce redundant computation and storage requirements. Second, we developed the AP-FasterNet architecture for small targets that are commonly found in underwater datasets. By integrating depth-separable convolutions with different expansion rates into FasterNet, AP-FasterNet enhances the model’s ability to capture detailed features of small targets. Finally, we integrate the lightweight and efficient content-aware reorganization (CARAFE) up-sampling operation into YOLOv8 to enhance the model performance by aggregating contextual information over a large perceptual field and mitigating information loss during up-sampling.Evaluation results on the URPC2021 dataset show that the YOLOv8-LA model achieves 84.7% mean accuracy (mAP) on a single Nvidia GeForce RTX 3090 and operates at 189.3 frames per second (FPS), demonstrating that it outperforms existing state-of-the-art methods in terms of performance. This result demonstrates the model’s ability to ensure high detection accuracy while maintaining real-time processing capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
求助哥完成签到,获得积分10
1秒前
2秒前
Zhohy发布了新的文献求助10
3秒前
welldown完成签到,获得积分10
3秒前
如初完成签到,获得积分10
5秒前
5秒前
帅气男孩发布了新的文献求助10
5秒前
yyyyyge完成签到,获得积分10
5秒前
栀蓝完成签到 ,获得积分10
6秒前
加油小海豚完成签到,获得积分10
6秒前
6秒前
7秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
祁行云发布了新的文献求助10
11秒前
桃花不用开了完成签到,获得积分10
11秒前
12秒前
12秒前
个性的罡完成签到,获得积分10
12秒前
12秒前
14秒前
15秒前
极速小鱼完成签到 ,获得积分20
15秒前
完美世界应助王振123654采纳,获得10
16秒前
16秒前
四体不勤发布了新的文献求助10
17秒前
19秒前
19秒前
cocaco发布了新的文献求助10
19秒前
南方发布了新的文献求助10
19秒前
19秒前
Ava应助ccl采纳,获得10
20秒前
风清扬发布了新的文献求助10
20秒前
迷路的尔丝完成签到,获得积分10
21秒前
22秒前
河中医朵花完成签到,获得积分10
25秒前
王盼发布了新的文献求助10
25秒前
haifeng发布了新的文献求助10
25秒前
26秒前
灵巧的斓完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618509
求助须知:如何正确求助?哪些是违规求助? 4703442
关于积分的说明 14922480
捐赠科研通 4757656
什么是DOI,文献DOI怎么找? 2550107
邀请新用户注册赠送积分活动 1512947
关于科研通互助平台的介绍 1474299