Underwater small target detection under YOLOv8-LA model

计算机科学 水下 卷积神经网络 人工智能 卷积(计算机科学) 计算 特征提取 模式识别(心理学) 采样(信号处理) 深度学习 领域(数学) 数据挖掘 人工神经网络 计算机视觉 算法 地质学 海洋学 滤波器(信号处理) 数学 纯数学
作者
Shaolin Qu,Can Cui,Jiale Duan,Yongling Lu,Zilong Pang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66950-w
摘要

Abstract In the realm of marine environmental engineering, the swift and accurate detection of underwater targets is of considerable significance. Recently, methods based on Convolutional Neural Networks (CNN) have been applied to enhance the detection of such targets. However, deep neural networks usually require a large number of parameters, resulting in slow processing speed. Meanwhile, existing methods present challenges in accurate detection when facing small and densely arranged underwater targets. To address these issues, we propose a new neural network model, YOLOv8-LA, for improving the detection performance of underwater targets. First, we design a Lightweight Efficient Partial Convolution (LEPC) module to optimize spatial feature extraction by selectively processing input channels to improve efficiency and significantly reduce redundant computation and storage requirements. Second, we developed the AP-FasterNet architecture for small targets that are commonly found in underwater datasets. By integrating depth-separable convolutions with different expansion rates into FasterNet, AP-FasterNet enhances the model’s ability to capture detailed features of small targets. Finally, we integrate the lightweight and efficient content-aware reorganization (CARAFE) up-sampling operation into YOLOv8 to enhance the model performance by aggregating contextual information over a large perceptual field and mitigating information loss during up-sampling.Evaluation results on the URPC2021 dataset show that the YOLOv8-LA model achieves 84.7% mean accuracy (mAP) on a single Nvidia GeForce RTX 3090 and operates at 189.3 frames per second (FPS), demonstrating that it outperforms existing state-of-the-art methods in terms of performance. This result demonstrates the model’s ability to ensure high detection accuracy while maintaining real-time processing capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅过吴彦祖完成签到,获得积分10
1秒前
风趣霆完成签到,获得积分10
2秒前
欢呼妙菱完成签到,获得积分10
3秒前
科研通AI6应助云云采纳,获得10
3秒前
贲孱完成签到,获得积分10
3秒前
Dearjw1655完成签到,获得积分10
4秒前
围城完成签到 ,获得积分10
4秒前
鲲鹏完成签到 ,获得积分10
6秒前
Hzml完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
爱沉淀的太阳花完成签到,获得积分10
7秒前
xueshidaheng完成签到,获得积分0
9秒前
无极微光应助白华苍松采纳,获得20
11秒前
kaiqiang完成签到,获得积分0
11秒前
鸡蛋酱完成签到 ,获得积分10
13秒前
溪泉完成签到,获得积分10
16秒前
16秒前
草木发布了新的文献求助10
16秒前
kyt完成签到 ,获得积分10
18秒前
咄咄完成签到 ,获得积分10
20秒前
笑点低的凉面完成签到,获得积分10
22秒前
23秒前
23秒前
EricSai完成签到,获得积分10
23秒前
chenkj完成签到,获得积分10
23秒前
ikun完成签到,获得积分10
23秒前
研友_ZA2B68完成签到,获得积分0
24秒前
zz完成签到 ,获得积分10
24秒前
小成完成签到 ,获得积分10
25秒前
heyseere完成签到,获得积分10
25秒前
Brief完成签到,获得积分0
25秒前
李新颖完成签到 ,获得积分10
26秒前
樊樊是渣子完成签到 ,获得积分20
26秒前
翟闻雨完成签到,获得积分10
27秒前
jkaaa完成签到,获得积分10
27秒前
28秒前
饱满绮波完成签到 ,获得积分10
28秒前
风信子完成签到,获得积分10
29秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590