Underwater small target detection under YOLOv8-LA model

计算机科学 水下 卷积神经网络 人工智能 卷积(计算机科学) 计算 特征提取 模式识别(心理学) 采样(信号处理) 深度学习 领域(数学) 数据挖掘 人工神经网络 计算机视觉 算法 地质学 海洋学 滤波器(信号处理) 数学 纯数学
作者
Shaolin Qu,Can Cui,Jiale Duan,Yongling Lu,Zilong Pang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66950-w
摘要

Abstract In the realm of marine environmental engineering, the swift and accurate detection of underwater targets is of considerable significance. Recently, methods based on Convolutional Neural Networks (CNN) have been applied to enhance the detection of such targets. However, deep neural networks usually require a large number of parameters, resulting in slow processing speed. Meanwhile, existing methods present challenges in accurate detection when facing small and densely arranged underwater targets. To address these issues, we propose a new neural network model, YOLOv8-LA, for improving the detection performance of underwater targets. First, we design a Lightweight Efficient Partial Convolution (LEPC) module to optimize spatial feature extraction by selectively processing input channels to improve efficiency and significantly reduce redundant computation and storage requirements. Second, we developed the AP-FasterNet architecture for small targets that are commonly found in underwater datasets. By integrating depth-separable convolutions with different expansion rates into FasterNet, AP-FasterNet enhances the model’s ability to capture detailed features of small targets. Finally, we integrate the lightweight and efficient content-aware reorganization (CARAFE) up-sampling operation into YOLOv8 to enhance the model performance by aggregating contextual information over a large perceptual field and mitigating information loss during up-sampling.Evaluation results on the URPC2021 dataset show that the YOLOv8-LA model achieves 84.7% mean accuracy (mAP) on a single Nvidia GeForce RTX 3090 and operates at 189.3 frames per second (FPS), demonstrating that it outperforms existing state-of-the-art methods in terms of performance. This result demonstrates the model’s ability to ensure high detection accuracy while maintaining real-time processing capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xupeng发布了新的文献求助10
刚刚
aslink完成签到,获得积分10
刚刚
egomarine发布了新的文献求助10
刚刚
lkk发布了新的文献求助10
刚刚
yzj发布了新的文献求助10
1秒前
1秒前
想摆烂完成签到,获得积分10
1秒前
浅慕寒暄发布了新的文献求助10
1秒前
hhh完成签到,获得积分20
1秒前
卢yi发布了新的文献求助10
2秒前
Gun完成签到,获得积分10
2秒前
海棠听风完成签到,获得积分10
2秒前
2秒前
2秒前
llemonm完成签到,获得积分10
3秒前
人生大事完成签到,获得积分10
3秒前
3秒前
蝴蝶变成毛毛虫完成签到,获得积分10
3秒前
高大楼房完成签到,获得积分10
3秒前
852应助孙一一采纳,获得10
4秒前
池林完成签到,获得积分10
4秒前
万能图书馆应助小茗同学采纳,获得10
4秒前
tian完成签到,获得积分10
4秒前
宝海青完成签到,获得积分10
5秒前
5秒前
李子涵发布了新的文献求助10
6秒前
6秒前
xupeng完成签到,获得积分10
6秒前
Jani完成签到,获得积分20
6秒前
JIE发布了新的文献求助10
6秒前
猫独秀完成签到,获得积分10
6秒前
林深沉完成签到,获得积分10
7秒前
正反馈发布了新的文献求助10
7秒前
暖冬22完成签到,获得积分10
7秒前
7秒前
cly3397完成签到,获得积分10
8秒前
8秒前
8秒前
布丁完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5081658
求助须知:如何正确求助?哪些是违规求助? 4299227
关于积分的说明 13394737
捐赠科研通 4122894
什么是DOI,文献DOI怎么找? 2258069
邀请新用户注册赠送积分活动 1262386
关于科研通互助平台的介绍 1196407