Underwater small target detection under YOLOv8-LA model

计算机科学 水下 卷积神经网络 人工智能 卷积(计算机科学) 计算 特征提取 模式识别(心理学) 采样(信号处理) 深度学习 领域(数学) 数据挖掘 人工神经网络 计算机视觉 算法 地质学 海洋学 滤波器(信号处理) 数学 纯数学
作者
Shaolin Qu,Can Cui,Jiale Duan,Yongling Lu,Zilong Pang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66950-w
摘要

Abstract In the realm of marine environmental engineering, the swift and accurate detection of underwater targets is of considerable significance. Recently, methods based on Convolutional Neural Networks (CNN) have been applied to enhance the detection of such targets. However, deep neural networks usually require a large number of parameters, resulting in slow processing speed. Meanwhile, existing methods present challenges in accurate detection when facing small and densely arranged underwater targets. To address these issues, we propose a new neural network model, YOLOv8-LA, for improving the detection performance of underwater targets. First, we design a Lightweight Efficient Partial Convolution (LEPC) module to optimize spatial feature extraction by selectively processing input channels to improve efficiency and significantly reduce redundant computation and storage requirements. Second, we developed the AP-FasterNet architecture for small targets that are commonly found in underwater datasets. By integrating depth-separable convolutions with different expansion rates into FasterNet, AP-FasterNet enhances the model’s ability to capture detailed features of small targets. Finally, we integrate the lightweight and efficient content-aware reorganization (CARAFE) up-sampling operation into YOLOv8 to enhance the model performance by aggregating contextual information over a large perceptual field and mitigating information loss during up-sampling.Evaluation results on the URPC2021 dataset show that the YOLOv8-LA model achieves 84.7% mean accuracy (mAP) on a single Nvidia GeForce RTX 3090 and operates at 189.3 frames per second (FPS), demonstrating that it outperforms existing state-of-the-art methods in terms of performance. This result demonstrates the model’s ability to ensure high detection accuracy while maintaining real-time processing capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ray发布了新的文献求助10
1秒前
情怀应助han采纳,获得10
1秒前
1秒前
1秒前
喵喵盖被发布了新的文献求助10
2秒前
zhaoying发布了新的文献求助10
2秒前
ceeray23应助白江虎采纳,获得10
2秒前
打打应助白江虎采纳,获得10
2秒前
菁菁业业完成签到,获得积分10
3秒前
科研通AI6应助糖布里部采纳,获得10
3秒前
万能图书馆应助张小六采纳,获得30
4秒前
4秒前
4秒前
楚珊珊发布了新的文献求助10
5秒前
6秒前
6秒前
教育厮完成签到,获得积分10
6秒前
LYSM应助隐形珊采纳,获得10
6秒前
Rookie完成签到,获得积分10
6秒前
7秒前
莫咏怡关注了科研通微信公众号
7秒前
deng发布了新的文献求助10
7秒前
yzm发布了新的文献求助10
7秒前
浮游应助张利双采纳,获得10
8秒前
8秒前
喵喵盖被完成签到,获得积分10
8秒前
zxb完成签到,获得积分20
9秒前
梁子完成签到,获得积分10
9秒前
受伤路灯完成签到,获得积分10
9秒前
刘英岑完成签到,获得积分10
9秒前
所所应助柚子采纳,获得10
9秒前
9秒前
9秒前
陈文青发布了新的文献求助10
9秒前
10秒前
赘婿应助山水主人采纳,获得10
10秒前
明亮的代灵完成签到 ,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409900
求助须知:如何正确求助?哪些是违规求助? 4527473
关于积分的说明 14110874
捐赠科研通 4441846
什么是DOI,文献DOI怎么找? 2437698
邀请新用户注册赠送积分活动 1429670
关于科研通互助平台的介绍 1407745