亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Underwater small target detection under YOLOv8-LA model

计算机科学 水下 卷积神经网络 人工智能 卷积(计算机科学) 计算 特征提取 模式识别(心理学) 采样(信号处理) 深度学习 领域(数学) 数据挖掘 人工神经网络 计算机视觉 算法 地质学 海洋学 滤波器(信号处理) 数学 纯数学
作者
Shaolin Qu,Can Cui,Jiale Duan,Yongling Lu,Zilong Pang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1)
标识
DOI:10.1038/s41598-024-66950-w
摘要

Abstract In the realm of marine environmental engineering, the swift and accurate detection of underwater targets is of considerable significance. Recently, methods based on Convolutional Neural Networks (CNN) have been applied to enhance the detection of such targets. However, deep neural networks usually require a large number of parameters, resulting in slow processing speed. Meanwhile, existing methods present challenges in accurate detection when facing small and densely arranged underwater targets. To address these issues, we propose a new neural network model, YOLOv8-LA, for improving the detection performance of underwater targets. First, we design a Lightweight Efficient Partial Convolution (LEPC) module to optimize spatial feature extraction by selectively processing input channels to improve efficiency and significantly reduce redundant computation and storage requirements. Second, we developed the AP-FasterNet architecture for small targets that are commonly found in underwater datasets. By integrating depth-separable convolutions with different expansion rates into FasterNet, AP-FasterNet enhances the model’s ability to capture detailed features of small targets. Finally, we integrate the lightweight and efficient content-aware reorganization (CARAFE) up-sampling operation into YOLOv8 to enhance the model performance by aggregating contextual information over a large perceptual field and mitigating information loss during up-sampling.Evaluation results on the URPC2021 dataset show that the YOLOv8-LA model achieves 84.7% mean accuracy (mAP) on a single Nvidia GeForce RTX 3090 and operates at 189.3 frames per second (FPS), demonstrating that it outperforms existing state-of-the-art methods in terms of performance. This result demonstrates the model’s ability to ensure high detection accuracy while maintaining real-time processing capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
gxx发布了新的文献求助10
6秒前
惠须一饮三杯杯完成签到,获得积分10
8秒前
冷静的振家完成签到,获得积分10
8秒前
10秒前
11秒前
16秒前
17秒前
wsj发布了新的文献求助10
20秒前
Ava应助骨科小李采纳,获得10
21秒前
22秒前
浪里白条发布了新的文献求助10
23秒前
别看了发布了新的文献求助10
26秒前
斯文败类应助wsj采纳,获得10
28秒前
小蘑菇应助gxx采纳,获得10
34秒前
哲别发布了新的文献求助10
44秒前
Hello应助浪里白条采纳,获得10
48秒前
freshfire完成签到,获得积分20
48秒前
HtheJ完成签到,获得积分10
48秒前
dimples完成签到 ,获得积分10
59秒前
英俊的铭应助Re采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
小蘑菇应助小废物采纳,获得20
1分钟前
骨科小李发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Re发布了新的文献求助10
1分钟前
杨江华完成签到,获得积分10
1分钟前
科研大王完成签到,获得积分10
2分钟前
明亮的老四完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
小废物发布了新的文献求助20
2分钟前
nazhang发布了新的文献求助10
2分钟前
浪里白条发布了新的文献求助10
2分钟前
香蕉觅云应助nazhang采纳,获得10
2分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644576
求助须知:如何正确求助?哪些是违规求助? 4764521
关于积分的说明 15025286
捐赠科研通 4802940
什么是DOI,文献DOI怎么找? 2567735
邀请新用户注册赠送积分活动 1525391
关于科研通互助平台的介绍 1484876