抗菌剂
图层(电子)
材料科学
植入
纳米技术
钛酸锶
化学
医学
薄膜
外科
有机化学
作者
Jiaxin Guan,Jiali Wang,Fengzhen Jia,Wen‐Jing Jiang,Lili Song,Lei Xie,Hao Yang,Pengde Han,He Lin,Zongze Wu,Xuejiao Zhang,Yong Huang
标识
DOI:10.1016/j.colsurfb.2024.114183
摘要
One way to effectively address endophyte infection and loosening is the creation of multifunctional coatings that combine anti-inflammatory, antibacterial, and vascularized osteogenesis. This study started with the preparation of strontium-doped titanium dioxide nanotubes (STN) on the titanium surface. Next, tannic acid (TA), gentamicin sulfate (GS), and pluronic F127 (PF127) were successfully loaded into the STN via layer-by-layer self-assembly, resulting in the STN@TA-GS/PF composite coatings. The findings demonstrated the excellent hydrophilicity and bioactivity of the STN@TA-GS/PF coating. STN@TA-GS/PF inhibited E. coli and S. aureus in vitro to a degree of roughly 80.95 % and 92.45 %, respectively. Cellular investigations revealed that on the STN@TA-GS/PF surface, the immune-system-related RAW264.7, the vasculogenic HUVEC, and the osteogenic MC3T3-E1 showed good adhesion and proliferation activities. STN@TA-GS/PF may influence RAW264.7 polarization toward the M2-type and encourage MC3T3-E1 differentiation toward osteogenesis at the molecular level. Meanwhile, the STN@TA-GS/PF coating achieved effective removal of ROS within HUVEC and significantly promoted angiogenesis. In both infected and non-infected bone defect models, the STN@TA-GS/PF material demonstrated strong anti-inflammatory, antibacterial, and vascularization-promoting osteogenesis properties. In addition, STN@TA-GS/PF had good hemocompatibility and biosafety. The three-step process used in this study to modify the titanium surface for several purposes gave rise to a novel concept for the clinical design of antimicrobial coatings with immunomodulatory properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI