催化作用
二氧化碳重整
热重分析
甲烷
材料科学
双金属
化学工程
放热反应
吸热过程
甲烷转化炉
合成气
化学
蒸汽重整
吸附
冶金
物理化学
有机化学
工程类
制氢
作者
Pradeep Kumar Yadav,P. S. Verma,Sudhanshu Sharma
标识
DOI:10.1016/j.mcat.2024.114398
摘要
The solution combustion synthesis method was used to make CuNi substituted CeO2 (7.5 at.% of Cu+7.5 at.% of Ni), and CuCo substituted CeO2 (7.5 at.% of Cu+7.5 at.% of Co) catalysts. The catalysts were characterized by x-ray diffraction (XRD),XPS, BET surface area measurements, scanning electron microscopy (SEM), and H2-temperature-programmed reduction(H2-TPR). Further, these catalysts were tested for endothermic dry reforming of methane (DRM) reaction. The CuNi substituted CeO2 catalyst started dry reforming of methane (DRM) at around 350 °C, while the CuCo substituted CeO2 catalyst started DRM at around 450 °C. This indicates that the CuNi catalyst has a lower activation temperature for the DRM reaction compared to the CuCo catalyst. The CuNi substituted CeO2 catalyst converted CH4 better than the CuCo substituted CeO2 at all temperatures reaching 98 % conversion at 800 °C The CuNi substituted CeO2 showed higher H2/CO ratio in comparison to the CuCo substituted CeO2 but the long-term stability followed the opposite order. Thermal gravimetric analysis (TGA), SEM and O2-TPO were used to quantify as well as to understand the nature of carbon that had built up on spent catalysts and it is mostly amorphous. Transient studies have shown that along with the lattice oxygen participation, controlled methane decomposition step is necessary for stability of catalysts. Transient studies also recommended additional reaction steps during DRM where an exothermic methane partial oxidation step reduces the endothermicity of DRM. Also, CO2 activation also goes via the defect dissociation route, an additional step to the conventional carbon oxidation (CO2+C→CO) step. So, novelty of this work is in elucidating the exact role of lattice oxygen in imparting the activity and stability to the DRM catalyst.
科研通智能强力驱动
Strongly Powered by AbleSci AI