已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

What can online traces tell us about students’ self-regulated learning? A systematic review of online trace data analysis

跟踪(心理语言学) 计算机科学 背景(考古学) 数据科学 一般化 度量(数据仓库) 数据挖掘 数学 语言学 生物 数学分析 哲学 古生物学
作者
Jiahui Du,Khe Foon Hew,Lejia Liu
出处
期刊:Computers & education [Elsevier]
卷期号:201: 104828-104828 被引量:47
标识
DOI:10.1016/j.compedu.2023.104828
摘要

"Self-regulated learning" (SRL) is defined as taking responsibility for one's own learning. Self-regulatory skills are crucial to learners' success in the online learning context. Although research on SRL is expanding in recent years, much of the literature has relied on self-reporting tools to measure SRL. Online trace data analysis, an emerging approach, provides the promise of greater authenticity and convenience in measuring SRL as compared to self-reports. We conducted a systematic review of online trace data analysis that measured SRL in various learning platforms to address three research questions: "How did previous studies use online trace data as indicators of SRL?", "What approaches are being used to interpret the online trace data?", and "What are the challenges of using online trace data to measure SRL?". We systematically searched seven bibliographic databases with specific inclusion and exclusion criteria. A total of 38 empirical studies were eventually examined. We leveraged the two most cited SRL models as theoretical basis and mapped the various online trace data into relevant SRL process to answer the first research question. Two commonly adopted approaches to interpret the online trace data were identified. Three key challenges pertaining to the use of trace data to measure SRL were identified: time segmentation, generalization, and validity. We discussed these challenges and the possible means to mitigate them. Finally, we propose a flowchart to guide future studies in conducting online trace data analysis in SRL research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风行域完成签到,获得积分10
1秒前
Monicadd完成签到 ,获得积分10
3秒前
yuanyuan发布了新的文献求助10
4秒前
月冷完成签到 ,获得积分10
5秒前
刀特左发布了新的文献求助10
5秒前
6秒前
学习使勇哥进步完成签到,获得积分10
9秒前
9秒前
研友_8y29gL完成签到,获得积分10
9秒前
我是老大应助yingtao采纳,获得10
10秒前
12秒前
somnus完成签到,获得积分10
12秒前
思源应助何叶采纳,获得10
14秒前
满意妙梦发布了新的文献求助10
14秒前
Summer完成签到 ,获得积分10
15秒前
syanxxxx发布了新的文献求助30
16秒前
yy完成签到,获得积分10
16秒前
yy发布了新的文献求助10
19秒前
21秒前
blackddl完成签到,获得积分0
22秒前
魔幻冰棍完成签到 ,获得积分10
24秒前
Yuki完成签到 ,获得积分10
24秒前
默默襄完成签到 ,获得积分10
27秒前
何叶发布了新的文献求助10
27秒前
626发布了新的文献求助10
31秒前
32秒前
33秒前
敞敞亮亮完成签到 ,获得积分10
34秒前
谨慎山槐完成签到 ,获得积分10
36秒前
体贴代容发布了新的文献求助30
37秒前
娜娜子完成签到 ,获得积分10
38秒前
踏实的哑铃完成签到,获得积分10
38秒前
42秒前
syanxxxx完成签到,获得积分10
44秒前
酷波er应助小橘子采纳,获得10
44秒前
落寞飞烟完成签到,获得积分10
44秒前
情怀应助随机应变采纳,获得10
44秒前
俊逸吐司完成签到 ,获得积分10
44秒前
少一点西红柿完成签到 ,获得积分10
44秒前
slby完成签到 ,获得积分10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599548
求助须知:如何正确求助?哪些是违规求助? 4685229
关于积分的说明 14838214
捐赠科研通 4669062
什么是DOI,文献DOI怎么找? 2538076
邀请新用户注册赠送积分活动 1505449
关于科研通互助平台的介绍 1470833