Effectiveness of multi-task deep learning framework for EEG-based emotion and context recognition

脑电图 计算机科学 人工智能 情绪识别 卷积神经网络 分类器(UML) 模式识别(心理学) 背景(考古学) 任务(项目管理) 语音识别 认知心理学 机器学习 心理学 神经科学 古生物学 管理 经济 生物
作者
Sanghyun Choo,Hoonseok Park,Sangyeon Kim,Donghyun Park,Jae‐Yoon Jung,Sangwon Lee,Chang S. Nam
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120348-120348 被引量:12
标识
DOI:10.1016/j.eswa.2023.120348
摘要

Studies have investigated electroencephalogram (EEG)-based emotion recognition using hand-crafted EEG features (e.g., differential entropy) or the annotated emotion categories without any additional emotion factors (e.g., context). The effectiveness of raw EEG-based emotion recognition remains for further investigation. In this study, we investigated the effectiveness of multi-task learning (MTL) for raw EEG-based convolutional neural networks (CNNs) in emotion recognition with auxiliary context information. Thirty subjects participated in this study, where their brain signals were collected when watching six types of emotion images (social/nonsocial-fear, social/nonsocial-sad, and social/nonsocial-neutral). For the MTL architecture, we utilized temporal and spatial filtering layers from raw EEG-based CNNs as shared and task-specific layers for emotion and context classification tasks. Subject-dependent classifications and five repeated five-fold cross-validation were performed to test the classification accuracy for all comparison models. Our results showed that (1) the MTL classifier had a significantly higher classification accuracy and improved the performance of the single-task learnings (STLs) for both emotion and context, and (2) the ShallowConvNet was the best network architecture among the considered CNNs for the MTL with statistically significant improvement to the raw EEG-based STLs. This shows that the MTL can be a promising method for emotion recognition in utilizing the raw EEG-based CNN classifiers and emphasizes the importance of considering context information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的擎宇完成签到,获得积分10
刚刚
Hello应助白华苍松采纳,获得10
刚刚
碳土不凡发布了新的文献求助10
1秒前
耍酷花卷完成签到,获得积分10
1秒前
小丛完成签到 ,获得积分10
1秒前
1秒前
LZZ完成签到,获得积分10
1秒前
小木虫完成签到,获得积分10
2秒前
小二郎应助无情山水采纳,获得10
2秒前
2秒前
大晨发布了新的文献求助10
2秒前
赖道之发布了新的文献求助10
3秒前
3秒前
1111发布了新的文献求助10
3秒前
坤坤发布了新的文献求助10
3秒前
酷波er应助包容的剑采纳,获得10
3秒前
4秒前
4秒前
genoy完成签到,获得积分10
4秒前
乔乔完成签到,获得积分10
4秒前
吾问无为谓完成签到,获得积分20
6秒前
6秒前
6秒前
花椒泡茶完成签到,获得积分10
6秒前
6秒前
小马哥完成签到,获得积分20
6秒前
6秒前
7秒前
mkW完成签到,获得积分10
7秒前
读研好难完成签到,获得积分10
7秒前
跳跃的罡发布了新的文献求助10
7秒前
论文侠完成签到 ,获得积分10
7秒前
神勇的雅香应助梓榆采纳,获得10
7秒前
7秒前
深情安青应助Mlwwq采纳,获得10
7秒前
脑洞疼应助耿强采纳,获得10
8秒前
江梦松完成签到,获得积分10
8秒前
8秒前
8秒前
liu发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762