Effectiveness of multi-task deep learning framework for EEG-based emotion and context recognition

脑电图 计算机科学 人工智能 情绪识别 卷积神经网络 分类器(UML) 模式识别(心理学) 背景(考古学) 任务(项目管理) 语音识别 认知心理学 机器学习 心理学 神经科学 古生物学 经济 管理 生物
作者
Sanghyun Choo,Hoonseok Park,Sangyeon Kim,Donghyun Park,Jae‐Yoon Jung,Sangwon Lee,Chang S. Nam
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:227: 120348-120348 被引量:12
标识
DOI:10.1016/j.eswa.2023.120348
摘要

Studies have investigated electroencephalogram (EEG)-based emotion recognition using hand-crafted EEG features (e.g., differential entropy) or the annotated emotion categories without any additional emotion factors (e.g., context). The effectiveness of raw EEG-based emotion recognition remains for further investigation. In this study, we investigated the effectiveness of multi-task learning (MTL) for raw EEG-based convolutional neural networks (CNNs) in emotion recognition with auxiliary context information. Thirty subjects participated in this study, where their brain signals were collected when watching six types of emotion images (social/nonsocial-fear, social/nonsocial-sad, and social/nonsocial-neutral). For the MTL architecture, we utilized temporal and spatial filtering layers from raw EEG-based CNNs as shared and task-specific layers for emotion and context classification tasks. Subject-dependent classifications and five repeated five-fold cross-validation were performed to test the classification accuracy for all comparison models. Our results showed that (1) the MTL classifier had a significantly higher classification accuracy and improved the performance of the single-task learnings (STLs) for both emotion and context, and (2) the ShallowConvNet was the best network architecture among the considered CNNs for the MTL with statistically significant improvement to the raw EEG-based STLs. This shows that the MTL can be a promising method for emotion recognition in utilizing the raw EEG-based CNN classifiers and emphasizes the importance of considering context information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zxy完成签到,获得积分10
刚刚
木木完成签到,获得积分10
1秒前
可爱的函函应助炙热短靴采纳,获得10
1秒前
芦荟板蓝根完成签到,获得积分10
1秒前
77应助王冉冉采纳,获得10
1秒前
浮游应助王冉冉采纳,获得10
1秒前
潇洒的诗桃应助王冉冉采纳,获得10
1秒前
哇咔咔发布了新的文献求助10
2秒前
ling完成签到 ,获得积分10
2秒前
WSGQT发布了新的文献求助10
3秒前
一颗苹果完成签到 ,获得积分10
5秒前
6秒前
猛猛冲发布了新的文献求助10
6秒前
狼牙月完成签到,获得积分10
6秒前
cccc发布了新的文献求助10
7秒前
桐桐应助june采纳,获得10
7秒前
L_发布了新的文献求助10
8秒前
9秒前
隐形曼青应助hd采纳,获得10
9秒前
SallyLulu完成签到 ,获得积分10
10秒前
所所应助十一采纳,获得10
10秒前
10秒前
11秒前
zoey完成签到,获得积分10
11秒前
11秒前
Anquan完成签到,获得积分10
12秒前
彭于晏应助通~采纳,获得10
12秒前
搜集达人应助害羞惊蛰采纳,获得10
12秒前
111发布了新的文献求助10
12秒前
QiLe完成签到 ,获得积分10
12秒前
梓晴发布了新的文献求助10
13秒前
欧阳小枫完成签到 ,获得积分10
13秒前
13秒前
15秒前
ding应助huh采纳,获得10
16秒前
16秒前
拾柒发布了新的文献求助10
17秒前
对称发布了新的文献求助10
17秒前
Simoni发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5157901
求助须知:如何正确求助?哪些是违规求助? 4352923
关于积分的说明 13553322
捐赠科研通 4196322
什么是DOI,文献DOI怎么找? 2301563
邀请新用户注册赠送积分活动 1301346
关于科研通互助平台的介绍 1246509