Effectiveness of multi-task deep learning framework for EEG-based emotion and context recognition

脑电图 计算机科学 人工智能 情绪识别 卷积神经网络 分类器(UML) 模式识别(心理学) 背景(考古学) 任务(项目管理) 语音识别 认知心理学 机器学习 心理学 神经科学 古生物学 经济 管理 生物
作者
Sanghyun Choo,Hoonseok Park,Sangyeon Kim,Donghyun Park,Jae‐Yoon Jung,Sangwon Lee,Chang S. Nam
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:227: 120348-120348 被引量:12
标识
DOI:10.1016/j.eswa.2023.120348
摘要

Studies have investigated electroencephalogram (EEG)-based emotion recognition using hand-crafted EEG features (e.g., differential entropy) or the annotated emotion categories without any additional emotion factors (e.g., context). The effectiveness of raw EEG-based emotion recognition remains for further investigation. In this study, we investigated the effectiveness of multi-task learning (MTL) for raw EEG-based convolutional neural networks (CNNs) in emotion recognition with auxiliary context information. Thirty subjects participated in this study, where their brain signals were collected when watching six types of emotion images (social/nonsocial-fear, social/nonsocial-sad, and social/nonsocial-neutral). For the MTL architecture, we utilized temporal and spatial filtering layers from raw EEG-based CNNs as shared and task-specific layers for emotion and context classification tasks. Subject-dependent classifications and five repeated five-fold cross-validation were performed to test the classification accuracy for all comparison models. Our results showed that (1) the MTL classifier had a significantly higher classification accuracy and improved the performance of the single-task learnings (STLs) for both emotion and context, and (2) the ShallowConvNet was the best network architecture among the considered CNNs for the MTL with statistically significant improvement to the raw EEG-based STLs. This shows that the MTL can be a promising method for emotion recognition in utilizing the raw EEG-based CNN classifiers and emphasizes the importance of considering context information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shuzi完成签到,获得积分20
1秒前
乐乐应助不是细菌采纳,获得10
1秒前
1秒前
张光光发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
Maestro_S发布了新的文献求助10
2秒前
wanci应助俏皮念寒采纳,获得20
3秒前
爱吃饭的黄哥完成签到,获得积分10
3秒前
wangmeiqiong完成签到,获得积分10
3秒前
关心蕊完成签到,获得积分20
4秒前
soss完成签到,获得积分10
4秒前
研友_8y2G0L完成签到,获得积分10
5秒前
郁盈驳回了田様应助
5秒前
momingaz发布了新的文献求助10
5秒前
Wiesen完成签到,获得积分10
5秒前
qzp发布了新的文献求助30
5秒前
5秒前
6秒前
晓布衣发布了新的文献求助10
6秒前
在水一方应助XINYUZHU采纳,获得10
6秒前
Liu_cx完成签到,获得积分10
6秒前
zhao完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
无误发布了新的文献求助10
7秒前
小二郎应助euz采纳,获得10
7秒前
张光光完成签到,获得积分10
8秒前
小冰棍完成签到,获得积分10
8秒前
听闻完成签到,获得积分10
9秒前
田様应助gy采纳,获得10
9秒前
xymiab发布了新的文献求助10
10秒前
10秒前
Tasker-X发布了新的文献求助10
11秒前
Endeavor发布了新的文献求助10
11秒前
gsgg完成签到 ,获得积分20
11秒前
ZG完成签到,获得积分10
11秒前
SciGPT应助zyc采纳,获得10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4599035
求助须知:如何正确求助?哪些是违规求助? 4009790
关于积分的说明 12413421
捐赠科研通 3689444
什么是DOI,文献DOI怎么找? 2033850
邀请新用户注册赠送积分活动 1066993
科研通“疑难数据库(出版商)”最低求助积分说明 952128