亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Effectiveness of multi-task deep learning framework for EEG-based emotion and context recognition

脑电图 计算机科学 人工智能 情绪识别 卷积神经网络 分类器(UML) 模式识别(心理学) 背景(考古学) 任务(项目管理) 语音识别 认知心理学 机器学习 心理学 神经科学 古生物学 经济 管理 生物
作者
Sanghyun Choo,Hoonseok Park,Sangyeon Kim,Donghyun Park,Jae‐Yoon Jung,Sangwon Lee,Chang S. Nam
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120348-120348 被引量:24
标识
DOI:10.1016/j.eswa.2023.120348
摘要

Studies have investigated electroencephalogram (EEG)-based emotion recognition using hand-crafted EEG features (e.g., differential entropy) or the annotated emotion categories without any additional emotion factors (e.g., context). The effectiveness of raw EEG-based emotion recognition remains for further investigation. In this study, we investigated the effectiveness of multi-task learning (MTL) for raw EEG-based convolutional neural networks (CNNs) in emotion recognition with auxiliary context information. Thirty subjects participated in this study, where their brain signals were collected when watching six types of emotion images (social/nonsocial-fear, social/nonsocial-sad, and social/nonsocial-neutral). For the MTL architecture, we utilized temporal and spatial filtering layers from raw EEG-based CNNs as shared and task-specific layers for emotion and context classification tasks. Subject-dependent classifications and five repeated five-fold cross-validation were performed to test the classification accuracy for all comparison models. Our results showed that (1) the MTL classifier had a significantly higher classification accuracy and improved the performance of the single-task learnings (STLs) for both emotion and context, and (2) the ShallowConvNet was the best network architecture among the considered CNNs for the MTL with statistically significant improvement to the raw EEG-based STLs. This shows that the MTL can be a promising method for emotion recognition in utilizing the raw EEG-based CNN classifiers and emphasizes the importance of considering context information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
金金完成签到 ,获得积分10
1秒前
坦率的语芙完成签到,获得积分10
8秒前
善学以致用应助帅气书白采纳,获得10
11秒前
12秒前
15秒前
18秒前
七面东风完成签到,获得积分10
19秒前
科研通AI6应助neko采纳,获得10
23秒前
26秒前
侯锐淇完成签到 ,获得积分10
29秒前
31秒前
xiaowang发布了新的文献求助10
32秒前
moodlunatic发布了新的文献求助30
37秒前
qiuzhu_完成签到 ,获得积分10
42秒前
xiaowang完成签到,获得积分10
42秒前
ceeray23发布了新的文献求助20
42秒前
Hello应助小杨采纳,获得10
43秒前
123456完成签到,获得积分10
48秒前
moodlunatic完成签到,获得积分10
49秒前
51秒前
123456发布了新的文献求助20
52秒前
清爽冬莲完成签到 ,获得积分0
58秒前
1分钟前
qiuzhu_发布了新的文献求助10
1分钟前
1分钟前
鲤鱼发布了新的文献求助10
1分钟前
Yiyong发布了新的文献求助20
1分钟前
1分钟前
1分钟前
科研通AI6应助古兰采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Nickzzz发布了新的文献求助10
1分钟前
甜美的沅完成签到 ,获得积分10
1分钟前
失眠的稀发布了新的文献求助10
1分钟前
1分钟前
倷倷完成签到 ,获得积分10
1分钟前
1分钟前
草莓星发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554672
求助须知:如何正确求助?哪些是违规求助? 4639324
关于积分的说明 14655924
捐赠科研通 4581173
什么是DOI,文献DOI怎么找? 2512637
邀请新用户注册赠送积分活动 1487389
关于科研通互助平台的介绍 1458262