泰文定理
开路电压
在线模型
电池(电)
等效电路
电压
电气工程
锂(药物)
荷电状态
锂离子电池
卡尔曼滤波器
控制理论(社会学)
扩展卡尔曼滤波器
递归最小平方滤波器
航程(航空)
计算机科学
工程类
电子工程
物理
自适应滤波器
数学
功率(物理)
航空航天工程
人工智能
内分泌学
统计
医学
控制(管理)
量子力学
作者
Renxin Xiao,Hu Yanwen,Wei Zhang,Chen Zhao-hui
标识
DOI:10.1016/j.est.2023.107509
摘要
The open circuit voltage (OCV) is inherently related to the state of charge (SoC) and their relationships under different temperatures are crucial for accurate SoC estimation for the lithium-ion battery based on the equivalent circuit model (ECM), which requires long time-consuming offline OCV tests. In this research, an online closed-loop SoC estimation without conducting OCV tests is put forward. Firstly, the parameters of the Thevenin model for the lithium-ion battery are identified online through the adaptive recursive least square with forgetting factor (AFFRLS). Afterwards, the adaptive unscented Kalman filter (AUKF) is applied to achieve the online closed-loop SoC estimation with the identified parameters. Subsequently, the relationships between the OCV and SoC under different temperatures have been reconstructed online. The proposed method is validated under different temperatures. The research reveals this method can accurately estimate the SoC and is robust to the initial SoC values in wide temperature range.
科研通智能强力驱动
Strongly Powered by AbleSci AI