Quality classification model with machine learning for porosity prediction in laser welding aluminum alloys

多孔性 焊接 材料科学 过程(计算) 质量(理念) 激光束焊接 机器学习 计算机科学 人工智能 算法 工艺工程 机械工程 冶金 复合材料 工程类 操作系统 哲学 认识论
作者
Joys Silva Rivera,Marc-Olivier Gagné,Siyu Tu,Noureddine Barka,F. Nadeau,Abderrazak El Ouafi
出处
期刊:Journal of Laser Applications [Laser Institute of America]
卷期号:35 (2): 022011-022011 被引量:5
标识
DOI:10.2351/7.0000769
摘要

The growing implementation of aluminum alloys in industry has focused interest on studying transformation processes such as laser welding. This process generates different kinds of signals that can be monitored and used to evaluate it and make a quality analysis of the final product. Internal defects that are difficult to detect, such as porosity, are one of the most critical irregularities in laser welding. This kind of defect may result in a critical failure of the manufactured goods, affecting the final user. In this research, a porosity prediction method using a high-speed camera monitoring system and machine learning (ML) algorithms is proposed and studied to find the most performant methodology to resolve the prediction problem. The methodology includes feature extraction by high-speed X-ray analysis, feature engineering and selection, imbalance treatment, and the evaluation of the ML algorithms by metrics such as accuracy, AUC (area under the curve), and F1. As a result, it was found that the best ML algorithm for porosity prediction in the proposed setup is Random Forest with a 0.83 AUC and 75% accuracy, 0.75 in the F1 score for no porosity, and 0.76 in the F1 score for porosity. The results of the proposed model and methodology indicate that they could be implemented in industrial applications for enhancing the final product quality for welded plates, reducing process waste and product quality analysis time, and increasing the operational performance of the process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助wzx采纳,获得10
刚刚
nqterysc发布了新的文献求助10
刚刚
song应助YangTianYu采纳,获得10
2秒前
FFFFFFF应助朱洛尘采纳,获得10
2秒前
了该发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
樱花慕斯发布了新的文献求助10
5秒前
一一完成签到,获得积分10
5秒前
满意的小鸽子完成签到,获得积分10
5秒前
5秒前
虚心完成签到 ,获得积分0
6秒前
kk发布了新的文献求助10
6秒前
如意的刚完成签到,获得积分10
6秒前
CipherSage应助Mercury采纳,获得10
6秒前
7秒前
研友_Z6Qggn完成签到 ,获得积分10
8秒前
楚之杰者发布了新的文献求助10
8秒前
传奇3应助彪壮的刺猬采纳,获得10
9秒前
张曰淼发布了新的文献求助10
9秒前
Viiigo发布了新的文献求助10
9秒前
10秒前
兔美酱发布了新的文献求助10
10秒前
王果完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
kk发布了新的文献求助10
13秒前
13秒前
14秒前
xiaoxiang_1001完成签到,获得积分10
15秒前
15秒前
彭于晏应助雪松采纳,获得10
15秒前
顾矜应助壮观梦易采纳,获得30
15秒前
科研通AI2S应助壮观梦易采纳,获得10
16秒前
小二郎应助壮观梦易采纳,获得10
16秒前
今后应助壮观梦易采纳,获得10
16秒前
星辰大海应助壮观梦易采纳,获得10
16秒前
汉堡包应助壮观梦易采纳,获得10
16秒前
充电宝应助壮观梦易采纳,获得200
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141