Dynamic perceived quality analysis using social media data at macro- and micro-levels

质量(理念) 感知 独创性 计算机科学 社会化媒体 信息质量 数据挖掘 工程类 心理学 信息系统 社会心理学 创造力 万维网 哲学 电气工程 神经科学 程序设计语言 认识论
作者
Tong Yang,Yanzhong Dang,Jiangning Wu
出处
期刊:Industrial Management and Data Systems [Emerald (MCB UP)]
卷期号:123 (5): 1465-1495 被引量:8
标识
DOI:10.1108/imds-08-2022-0478
摘要

Purpose This paper aims to propose a method for dynamic product perceived quality analysis using social media data and to achieve a macro–micro combination analysis. The method enables the prioritization of perceived quality attributes and provides perception causes. Design/methodology/approach To rationalize the macro–micro combination, ANOVA and multiple linear regression were used to identify the main factors affecting perceived quality which served as the combination basis; by using the combination basis for consumer segmentation, macro-knowledge (i.e. attribute importance and quality category of the attribute) is achieved by term frequency-inverse document frequency (TF-IDF)-based attribute importance calculation and KANO-based attribute classification, which is combined with micro-quality diagnostic information (i.e. perceived quality, perception causes and quality parameters). Further, dynamic perception Importance-Performance Analysis (IPA) is built to present the attribute priority and perception causes. Findings The framework was validated by the new energy vehicle (NEV) data of Autohome. The results show that price and purchase purpose are the most influential factors of perceived quality and that dynamic perception IPA can effectively prioritize attributes and mine perception causes. Originality/value This is one of the first studies to analyze dynamic perceived quality using social media data, which contributes to the research on perceived quality. The paper also contributes by achieving a combined macro–micro analysis of perceived quality. The method rationalizes the macro–micro combination by identifying the factors influencing perceived quality, which provides ideas for other studies using social media data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淡定的抽屉完成签到,获得积分20
3秒前
Michael发布了新的文献求助10
4秒前
4秒前
聆听雨完成签到,获得积分10
5秒前
研友_Zb1B4n发布了新的文献求助10
5秒前
科研通AI5应助大曹吧采纳,获得10
6秒前
sxy完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
坦率的千风完成签到,获得积分10
10秒前
10秒前
10秒前
11发布了新的文献求助10
11秒前
头头完成签到,获得积分10
11秒前
sxy发布了新的文献求助10
12秒前
开朗寻凝发布了新的文献求助10
13秒前
zzzzzz发布了新的文献求助10
14秒前
14秒前
xhl发布了新的文献求助100
16秒前
老花眼莫莫完成签到,获得积分10
18秒前
18秒前
19秒前
21秒前
自由慕青应助zzzzzz采纳,获得10
21秒前
阿勒泰发布了新的文献求助10
21秒前
21秒前
23秒前
gucci发布了新的文献求助10
24秒前
25秒前
科研通AI5应助洁净的母鸡采纳,获得10
26秒前
共享精神应助NCBM采纳,获得10
26秒前
阿飞完成签到,获得积分10
27秒前
28秒前
隐形之柔完成签到,获得积分10
28秒前
XinyiZhang发布了新的文献求助10
29秒前
思源应助zzzq采纳,获得30
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540860
求助须知:如何正确求助?哪些是违规求助? 3118095
关于积分的说明 9333922
捐赠科研通 2815936
什么是DOI,文献DOI怎么找? 1548010
邀请新用户注册赠送积分活动 721229
科研通“疑难数据库(出版商)”最低求助积分说明 712613