3D-printing of selectively porous, freestanding structures via humidity-induced rapid phase change

材料科学 3D打印 多孔性 溶解 湿度 纳米技术 复合材料 化学工程 物理 工程类 热力学
作者
Jacob Search,Alireza Mahjoubnia,Andy C. Chen,Heng Deng,Aik Jong Tan,Shi‐You Chen,Jian Lin
出处
期刊:Additive manufacturing [Elsevier]
卷期号:68: 103514-103514 被引量:7
标识
DOI:10.1016/j.addma.2023.103514
摘要

The emergence of three-dimensional (3D) printing has driven the advancement of fabricating 3D structures for various applications. However, the current printing techniques suffer from long print times and limited versatility. Particularly, for methods using material extrusion, printing of freestanding 3D structures without support remains a challenge. Herein, a new approach is introduced for printing of selectively porous, freestanding structures without support through a rapid liquid-to-solid phase change mechanism enabled by humidity. The mechanism works by rapid diffusion and dissolution of a volatile organic solvent, e.g., tetrahydrofuran (THF), in the humidity, thus leading to a quick solidification of a dissolved polymer precursor, e.g., polycaprolactone (PCL). Various structures including a 3D lattice, a six-petal flower, a honeycomb, a hollow cone, and a freestanding cage were successfully printed. These structures were printed with a 159-μm inner-diameter nozzle at a linear print speed of 25 mm/s, resulting in a volumetric print speed in the range of 0.3–0.4 mm3/s. Correlation of the printing parameters with the resulting structures was systematically investigated. They show surface pores with sizes of tens of micrometers. Their average pore size and density increase with the humidity level. Furthermore, the printed material demonstrated great biocompatibility. It is expected that this novel printing technique can be applied to different inks with various compositions for high-throughput production of complex, multifunctional 3D structures, thus paving a route to many applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到,获得积分10
1秒前
搞怪凝云发布了新的文献求助10
1秒前
organicboy完成签到,获得积分10
3秒前
3秒前
裴果发布了新的文献求助10
4秒前
4秒前
wei发布了新的文献求助10
5秒前
都孟然发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
organicboy发布了新的文献求助10
7秒前
7秒前
一一完成签到,获得积分20
8秒前
123完成签到,获得积分10
8秒前
LaTeXer应助Mic采纳,获得100
9秒前
9秒前
罗尼关注了科研通微信公众号
9秒前
西瓜完成签到,获得积分10
10秒前
10秒前
1111发布了新的文献求助10
11秒前
111发布了新的文献求助10
11秒前
SCI完成签到,获得积分10
11秒前
怕黑书翠完成签到,获得积分20
12秒前
李爱国应助一一采纳,获得10
13秒前
14秒前
ksiswl发布了新的文献求助10
14秒前
哩哩发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
周敏杰完成签到,获得积分10
15秒前
15秒前
乐乐应助liaoyoujiao采纳,获得10
16秒前
王杰完成签到,获得积分10
16秒前
搜集达人应助哭泣的犀牛采纳,获得10
17秒前
wanci应助hhhhhhhh采纳,获得10
17秒前
李里哩发布了新的文献求助10
20秒前
火神杯完成签到,获得积分10
20秒前
大模型应助水母采纳,获得10
20秒前
FashionBoy应助江湖一郎中采纳,获得10
21秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672