Uncertainties of landslide susceptibility prediction considering different landslide types

山崩 逻辑回归 地质学 崩积层 决策树 岩土工程 统计 地貌学 数据挖掘 计算机科学 数学 冲积层
作者
Faming Huang,Haowen Xiong,Chi Yao,Filippo Catani,Chuangbing Zhou,Jinsong Huang
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier]
卷期号:15 (11): 2954-2972 被引量:57
标识
DOI:10.1016/j.jrmge.2023.03.001
摘要

Most literature related to landslide susceptibility prediction only considers a single type of landslide, such as colluvial landslide, rock fall or debris flow, rather than different landslide types, which greatly affects susceptibility prediction performance. To construct efficient susceptibility prediction considering different landslide types, Huichang County in China is taken as example. Firstly, 105 rock falls, 350 colluvial landslides and 11 related environmental factors are identified. Then four machine learning models, namely logistic regression, multi-layer perception, support vector machine and C5.0 decision tree are applied for susceptibility modeling of rock fall and colluvial landslide. Thirdly, three different landslide susceptibility prediction (LSP) models considering landslide types based on C5.0 decision tree with excellent performance are constructed to generate final landslide susceptibility: (i) united method, which combines all landslide types directly; (ii) probability statistical method, which couples analyses of susceptibility indices under different landslide types based on probability formula; and (iii) maximum comparison method, which selects the maximum susceptibility index through comparing the predicted susceptibility indices under different types of landslides. Finally, uncertainties of landslide susceptibility are assessed by prediction accuracy, mean value and standard deviation. It is concluded that LSP results of the three coupled models considering landslide types basically conform to the spatial occurrence patterns of landslides in Huichang County. The united method has the best susceptibility prediction performance, followed by the probability method and maximum susceptibility method. More cases are needed to verify this result in-depth. LSP considering different landslide types is superior to that taking only a single type of landslide into account.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦的秋玲完成签到,获得积分10
刚刚
1秒前
科研通AI2S应助风趣的诗云采纳,获得10
1秒前
JOY发布了新的文献求助10
1秒前
2秒前
酷酷的笑白完成签到,获得积分10
2秒前
轩辕唯雪完成签到,获得积分10
2秒前
无限的谷丝完成签到,获得积分10
3秒前
完美诺言完成签到,获得积分10
3秒前
me发布了新的文献求助10
4秒前
5秒前
天天快乐应助謓言采纳,获得10
6秒前
佳佳发布了新的文献求助10
6秒前
轩辕唯雪发布了新的文献求助10
7秒前
7秒前
麟梦寒完成签到,获得积分10
7秒前
8秒前
西一阿铭完成签到,获得积分10
8秒前
科研通AI2S应助Libra采纳,获得10
9秒前
南佳应助纪震宇采纳,获得10
10秒前
10秒前
Tian完成签到,获得积分10
10秒前
未知数发布了新的文献求助10
12秒前
hahaha123完成签到 ,获得积分10
12秒前
佳佳完成签到,获得积分10
13秒前
13秒前
15秒前
Pan完成签到,获得积分10
16秒前
16秒前
16秒前
18秒前
江江发布了新的文献求助10
18秒前
19秒前
科研通AI2S应助jingjing-8995采纳,获得10
19秒前
MYYY完成签到,获得积分10
19秒前
字符串发布了新的文献求助10
21秒前
麟梦寒发布了新的文献求助10
21秒前
Forest发布了新的文献求助10
21秒前
今后应助轩辕唯雪采纳,获得10
21秒前
害羞大碗发布了新的文献求助10
22秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170704
求助须知:如何正确求助?哪些是违规求助? 2821739
关于积分的说明 7936289
捐赠科研通 2482180
什么是DOI,文献DOI怎么找? 1322371
科研通“疑难数据库(出版商)”最低求助积分说明 633620
版权声明 602608