Uncertainties of landslide susceptibility prediction considering different landslide types

山崩 逻辑回归 地质学 崩积层 决策树 岩土工程 统计 地貌学 数据挖掘 计算机科学 数学 冲积层
作者
Faming Huang,Haowen Xiong,Chi Yao,Filippo Catani,Chuangbing Zhou,Jinsong Huang
出处
期刊:Journal of rock mechanics and geotechnical engineering [Elsevier BV]
卷期号:15 (11): 2954-2972 被引量:57
标识
DOI:10.1016/j.jrmge.2023.03.001
摘要

Most literature related to landslide susceptibility prediction only considers a single type of landslide, such as colluvial landslide, rock fall or debris flow, rather than different landslide types, which greatly affects susceptibility prediction performance. To construct efficient susceptibility prediction considering different landslide types, Huichang County in China is taken as example. Firstly, 105 rock falls, 350 colluvial landslides and 11 related environmental factors are identified. Then four machine learning models, namely logistic regression, multi-layer perception, support vector machine and C5.0 decision tree are applied for susceptibility modeling of rock fall and colluvial landslide. Thirdly, three different landslide susceptibility prediction (LSP) models considering landslide types based on C5.0 decision tree with excellent performance are constructed to generate final landslide susceptibility: (i) united method, which combines all landslide types directly; (ii) probability statistical method, which couples analyses of susceptibility indices under different landslide types based on probability formula; and (iii) maximum comparison method, which selects the maximum susceptibility index through comparing the predicted susceptibility indices under different types of landslides. Finally, uncertainties of landslide susceptibility are assessed by prediction accuracy, mean value and standard deviation. It is concluded that LSP results of the three coupled models considering landslide types basically conform to the spatial occurrence patterns of landslides in Huichang County. The united method has the best susceptibility prediction performance, followed by the probability method and maximum susceptibility method. More cases are needed to verify this result in-depth. LSP considering different landslide types is superior to that taking only a single type of landslide into account.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊啊啊啊完成签到,获得积分10
刚刚
u深度完成签到 ,获得积分10
1秒前
龙龙ff11_发布了新的文献求助10
1秒前
背后的千柳完成签到,获得积分10
1秒前
Square完成签到,获得积分10
1秒前
LLLi完成签到,获得积分10
2秒前
Maxpan发布了新的文献求助10
2秒前
LW完成签到,获得积分10
2秒前
Ethan发布了新的文献求助10
2秒前
大力的猕猴桃完成签到,获得积分10
2秒前
十年完成签到,获得积分10
3秒前
充电宝应助务实天德采纳,获得10
3秒前
Hello应助xin6688采纳,获得30
3秒前
凌雪柯完成签到,获得积分10
3秒前
安静的兔子完成签到,获得积分10
4秒前
所所应助好看的鸵鸟采纳,获得10
4秒前
just发布了新的文献求助10
4秒前
yuyi完成签到,获得积分10
4秒前
Orange应助啾啾尼泊尔采纳,获得10
4秒前
风中夜天完成签到 ,获得积分10
5秒前
andou完成签到,获得积分10
5秒前
6秒前
雪下卧眠完成签到,获得积分10
8秒前
wangyy65完成签到 ,获得积分10
8秒前
Lucas应助just采纳,获得10
8秒前
吼吼哈哈完成签到,获得积分10
9秒前
顾矜应助无辜的笙采纳,获得10
9秒前
又是一年完成签到,获得积分10
10秒前
在水一方应助danan采纳,获得10
11秒前
xuqiansd完成签到,获得积分10
11秒前
figure完成签到 ,获得积分10
11秒前
xiaohaitao发布了新的文献求助10
12秒前
伶俐安萱完成签到,获得积分10
12秒前
奶油蜜豆卷完成签到,获得积分10
12秒前
一地狗粮完成签到,获得积分10
12秒前
Maxpan完成签到,获得积分10
13秒前
tanchihao完成签到,获得积分10
14秒前
英姑应助小落采纳,获得10
14秒前
一只黑麂完成签到,获得积分10
14秒前
务实老虎完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953608
求助须知:如何正确求助?哪些是违规求助? 3499327
关于积分的说明 11094832
捐赠科研通 3229935
什么是DOI,文献DOI怎么找? 1785767
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478