SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote Sensing Imagery

计算机科学 计算 目标检测 人工智能 像素 特征(语言学) 图像分辨率 模式识别(心理学) 对象(语法) 推论 深度学习 计算机视觉 失败 人工神经网络 算法 语言学 哲学 并行计算
作者
Jiaqing Zhang,Jie Lei,Weiying Xie,Zhenman Fang,Yunsong Li,Qian Du
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:94
标识
DOI:10.1109/tgrs.2023.3258666
摘要

Accurately and timely detecting multiscale small objects that contain tens of pixels from remote sensing images (RSI) remains challenging. Most of the existing solutions primarily design complex deep neural networks to learn strong feature representations for objects separated from the background, which often results in a heavy computation burden. In this article, we propose an accurate yet fast object detection method for RSI, named SuperYOLO, which fuses multimodal data and performs high-resolution (HR) object detection on multiscale objects by utilizing the assisted super resolution (SR) learning and considering both the detection accuracy and computation cost. First, we utilize a symmetric compact multimodal fusion (MF) to extract supplementary information from various data for improving small object detection in RSI. Furthermore, we design a simple and flexible SR branch to learn HR feature representations that can discriminate small objects from vast backgrounds with low-resolution (LR) input, thus further improving the detection accuracy. Moreover, to avoid introducing additional computation, the SR branch is discarded in the inference stage, and the computation of the network model is reduced due to the LR input. Experimental results show that, on the widely used VEDAI RS dataset, SuperYOLO achieves an accuracy of 75.09% (in terms of mAP50 ), which is more than 10% higher than the SOTA large models, such as YOLOv5l, YOLOv5x, and RS designed YOLOrs. Meanwhile, the parameter size and GFLOPs of SuperYOLO are about 18 times and 3.8 times less than YOLOv5x. Our proposed model shows a favorable accuracy and speed tradeoff compared to the state-of-the-art models. The code will be open-sourced at https://github.com/icey-zhang/SuperYOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
恒恒666完成签到,获得积分10
2秒前
情怀应助zhut采纳,获得10
3秒前
4秒前
wanci应助LIU采纳,获得10
4秒前
小葱完成签到,获得积分20
7秒前
巧乐兹发布了新的文献求助10
7秒前
香芋应助Hana采纳,获得10
9秒前
Aegon完成签到,获得积分20
9秒前
笨笨从凝发布了新的文献求助10
10秒前
科研八戒完成签到,获得积分10
10秒前
10秒前
zty568完成签到,获得积分10
11秒前
13134发布了新的文献求助10
13秒前
15秒前
张口结舌的果实完成签到,获得积分10
15秒前
隐形曼青应助无限电话采纳,获得10
16秒前
研友_nEWrN8完成签到,获得积分10
18秒前
我补药上学关注了科研通微信公众号
18秒前
快乐白曼关注了科研通微信公众号
19秒前
pjs完成签到,获得积分10
19秒前
笨笨从凝完成签到,获得积分10
20秒前
sxy完成签到,获得积分10
21秒前
WANG发布了新的文献求助10
22秒前
nicoco完成签到,获得积分10
23秒前
闪闪的半莲完成签到,获得积分10
24秒前
25秒前
幸运的人完成签到,获得积分10
25秒前
25秒前
26秒前
28秒前
31秒前
历史雨完成签到,获得积分10
32秒前
王天天发布了新的文献求助10
33秒前
L_x完成签到 ,获得积分10
33秒前
双刀火鸡发布了新的文献求助30
33秒前
AIFREEDOM完成签到,获得积分10
34秒前
34秒前
35秒前
小奇完成签到,获得积分10
35秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433948
求助须知:如何正确求助?哪些是违规求助? 3031147
关于积分的说明 8941083
捐赠科研通 2719166
什么是DOI,文献DOI怎么找? 1491676
科研通“疑难数据库(出版商)”最低求助积分说明 689372
邀请新用户注册赠送积分活动 685523