Deep reinforcement learning based model-free optimization for unit commitment against wind power uncertainty

强化学习 电力系统仿真 马尔可夫决策过程 数学优化 风力发电 计算机科学 背景(考古学) 电力系统 一般化 人工智能 过程(计算) 马尔可夫过程 功率(物理) 工程类 数学 古生物学 数学分析 统计 物理 量子力学 电气工程 生物 操作系统
作者
G. F. Xu,Zhenjia Lin,Qiuwei Wu,Wai Kin Chan,Xiaoping Zhang
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:155: 109526-109526 被引量:9
标识
DOI:10.1016/j.ijepes.2023.109526
摘要

Solving the unit commitment (UC) problem in a computationally efficient manner has become increasingly crucial, especially in the context of high renewable energy penetration. This paper tackles this challenge by employing the offline training of a model-free deep reinforcement learning (DRL) framework, thereby enhancing the optimization efficiency of the UC problem. The complex modeling of random variables is avoided by reformulating the UC problem as a Markov decision process, where the DRL-based method extracts knowledge regarding wind output forecasting errors from historical data. Finally, a discrete proximal policy optimization (PPO-D) algorithm is developed to generate UC solutions under the discrete action spaces necessitated by unit start-up/shut-down variables. Simulation results on the 5-unit system demonstrate that the proposed DRL-based UC model can yield an optimal solution with higher computational efficiency compared to the conventional mathematical optimization methods, while hedging against the wind power uncertainty. In addition, the case study on the IEEE 118-bus system involving 31 testing days further validates the generalization ability of the proposed DRL-based UC model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lalalalalala完成签到,获得积分10
1秒前
threewei发布了新的文献求助10
1秒前
朻安完成签到,获得积分10
2秒前
4秒前
5秒前
6秒前
jeff完成签到,获得积分10
7秒前
59关闭了59文献求助
7秒前
可耐的嫣娆完成签到,获得积分10
11秒前
无花果应助hzz采纳,获得10
11秒前
音悦台发布了新的文献求助30
12秒前
15秒前
threewei完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
清欢完成签到 ,获得积分10
17秒前
18秒前
xixun关注了科研通微信公众号
18秒前
19秒前
19秒前
解语花发布了新的文献求助50
20秒前
啊啊啊完成签到,获得积分10
21秒前
小琛完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
25秒前
25秒前
36038138完成签到 ,获得积分10
27秒前
XRenaissance发布了新的文献求助10
28秒前
搬砖发布了新的文献求助10
29秒前
29秒前
酱紫完成签到 ,获得积分10
29秒前
淡定妙海发布了新的文献求助10
29秒前
NexusExplorer应助盖世汤圆采纳,获得20
30秒前
30秒前
Azyyyy完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助30
31秒前
31秒前
陈昇发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408