Preeclampsia Prediction Using Machine Learning and Polygenic Risk Scores From Clinical and Genetic Risk Factors in Early and Late Pregnancies

医学 血压 逻辑回归 子痫前期 四分位数 怀孕 接收机工作特性 弗雷明翰风险评分 产科 队列 内科学 生物 遗传学 置信区间 疾病
作者
Vesela Kovacheva,Braden W. Eberhard,Raphael Y. Cohen,Matthew Maher,Richa Saxena,Kathryn J. Gray
出处
期刊:Hypertension [Lippincott Williams & Wilkins]
卷期号:81 (2): 264-272 被引量:4
标识
DOI:10.1161/hypertensionaha.123.21053
摘要

Preeclampsia, a pregnancy-specific condition associated with new-onset hypertension after 20-weeks gestation, is a leading cause of maternal and neonatal morbidity and mortality. Predictive tools to understand which individuals are most at risk are needed.We identified a cohort of N=1125 pregnant individuals who delivered between May 2015 and May 2022 at Mass General Brigham Hospitals with available electronic health record data and linked genetic data. Using clinical electronic health record data and systolic blood pressure polygenic risk scores derived from a large genome-wide association study, we developed machine learning (XGBoost) and logistic regression models to predict preeclampsia risk.Pregnant individuals with a systolic blood pressure polygenic risk score in the top quartile had higher blood pressures throughout pregnancy compared with patients within the lowest quartile systolic blood pressure polygenic risk score. In the first trimester, the most predictive model was XGBoost, with an area under the curve of 0.74. In late pregnancy, with data obtained up to the delivery admission, the best-performing model was XGBoost using clinical variables, which achieved an area under the curve of 0.91. Adding the systolic blood pressure polygenic risk score to the models did not improve the performance significantly based on De Long test comparing the area under the curve of models with and without the polygenic score.Integrating clinical factors into predictive models can inform personalized preeclampsia risk and achieve higher predictive power than the current practice. In the future, personalized tools can be implemented to identify high-risk patients for preventative therapies and timely intervention to improve adverse maternal and neonatal outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
谜记发布了新的文献求助10
1秒前
hyd1640完成签到,获得积分10
2秒前
大个应助yyshhcyuwhegy采纳,获得10
2秒前
魏邪欢发布了新的文献求助10
2秒前
3秒前
3秒前
Rofger完成签到 ,获得积分10
3秒前
搭碰完成签到,获得积分0
4秒前
5秒前
研友_ng9Yj8完成签到,获得积分20
5秒前
vanilla发布了新的文献求助10
6秒前
6秒前
星辰大海应助幸福的勒采纳,获得10
6秒前
6秒前
米粒完成签到,获得积分10
7秒前
高高的逍遥完成签到,获得积分20
7秒前
7秒前
7秒前
xiaoxiao发布了新的文献求助10
7秒前
8秒前
Lili关注了科研通微信公众号
9秒前
张瑞青完成签到 ,获得积分10
9秒前
承宣发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
酷波er应助影子采纳,获得10
10秒前
可爱的函函应助lll采纳,获得10
10秒前
小酒迟疑发布了新的文献求助10
10秒前
fjljylm完成签到,获得积分10
10秒前
彩虹糖完成签到 ,获得积分10
11秒前
梦蝴蝶完成签到,获得积分10
11秒前
研友_ng9Yj8发布了新的文献求助10
11秒前
11秒前
学呀学发布了新的文献求助10
11秒前
Phi.Wang发布了新的文献求助10
13秒前
13秒前
小杰发布了新的文献求助10
13秒前
美丽的冷风完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3665569
求助须知:如何正确求助?哪些是违规求助? 3224872
关于积分的说明 9760129
捐赠科研通 2934794
什么是DOI,文献DOI怎么找? 1607205
邀请新用户注册赠送积分活动 759080
科研通“疑难数据库(出版商)”最低求助积分说明 735101