iPCa-Net: A CNN-based framework for predicting incidental prostate cancer using multiparametric MRI

卷积神经网络 计算机科学 人工智能 分割 前列腺癌 任务(项目管理) 深度学习 模式识别(心理学) 前列腺 癌症 医学 内科学 管理 经济
作者
Lijie Wen,Simiao Wang,Xianwei Pan,Yunan Liu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:110: 102309-102309 被引量:4
标识
DOI:10.1016/j.compmedimag.2023.102309
摘要

Incidental prostate cancer (iPCa) is an early stage of clinically significant prostate cancer (csPCa) and is typically asymptomatic, making it difficult to detect in clinical practice. The objective of this study is to predict iPCa by analyzing prostatic MRIs using deep convolutional neural network (CNN). While CNN-based models in medical image analysis have made significant advancements, the iPCa prediction task presents two challenging problems: subtler differences in MRIs that are imperceptible to human eyes and a lower incidence rate, resulting in a more pronounced sample imbalance compared to routine cancer prediction. To address these two challenges, we propose a new CNN-based framework called iPCa-Net, which is designed to jointly optimize two tasks: prostate transition zone segmentation and iPCa prediction. To evaluate the performance of our model, we construct a prostatic MRI dataset comprising 9536 prostate MRI slices from 448 patients diagnosed with benign prostatic hyperplasia (BPH) at our institution. In our study, the incidence rate of iPCa is 5.13% (23 out of 448) . We compare our model with eight state-of-the-art methods for segmentation task and nine established methods for prediction task respectively using our dataset, and experimental results demonstrate the superior performance of our model. Specifically, in the prostate transition zone segmentation task, our iPCa-Net outperforms the top-performing method by 1.23% with respect to mIoU. In the iPCa prediction task, our iPCa-Net surpasses the top-performing method by 2.06% with respect to F1 score. In conclusion, our iPCa-Net demonstrates superior performance in the early identification of iPCa patients compared to state-of-the-art methods. This advancement holds great significance for appropriate disease management and is highly beneficial for patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心千山完成签到,获得积分10
刚刚
立刻有完成签到 ,获得积分10
1秒前
zzz发布了新的文献求助10
2秒前
刘伟完成签到,获得积分20
2秒前
不安的松完成签到 ,获得积分10
8秒前
8秒前
10秒前
12秒前
yang完成签到,获得积分10
15秒前
zho发布了新的文献求助10
15秒前
charles发布了新的文献求助10
15秒前
16秒前
17秒前
科研通AI5应助adheret采纳,获得10
17秒前
19秒前
19秒前
lunhhhhh发布了新的文献求助10
20秒前
飞快的孱完成签到,获得积分10
21秒前
21秒前
人间完成签到,获得积分10
21秒前
jnuszjz发布了新的文献求助10
23秒前
JamesPei应助可靠笑容采纳,获得10
23秒前
人间发布了新的文献求助10
24秒前
zyf1980发布了新的文献求助20
27秒前
Azhou完成签到,获得积分10
27秒前
zzz完成签到,获得积分10
31秒前
SunLijia完成签到 ,获得积分10
31秒前
星辰与月完成签到,获得积分10
33秒前
33秒前
zz完成签到,获得积分10
33秒前
乐观的幻天完成签到,获得积分20
34秒前
小蘑菇应助君莫笑采纳,获得10
34秒前
jiesenya完成签到,获得积分10
36秒前
Jasper应助lpylll采纳,获得10
38秒前
39秒前
xiaoxiao发布了新的文献求助10
39秒前
忧虑的鼠标完成签到,获得积分10
40秒前
JUNE-gj发布了新的文献求助10
40秒前
芥末章鱼发布了新的文献求助30
44秒前
44秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Skin Tissue Engineering Methods and Protocols Book May 2025 300
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
Andrew Duncan Senior: Physician of the Enlightenment 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3688808
求助须知:如何正确求助?哪些是违规求助? 3238556
关于积分的说明 9835857
捐赠科研通 2950593
什么是DOI,文献DOI怎么找? 1618087
邀请新用户注册赠送积分活动 764837
科研通“疑难数据库(出版商)”最低求助积分说明 738889