Big Data Confidentiality: An Approach Toward Corporate Compliance Using a Rule-Based System

大数据 多样性(控制论) 保密 工作流程 数据治理 公司治理 业务 分析 数据科学 计算机科学 计算机安全 数据挖掘 营销 财务 数据库 数据质量 服务(商务) 人工智能
作者
Georgios Vranopoulos,Nathan Clarke,Shirley Atkinson
出处
期刊:Big data [Mary Ann Liebert]
被引量:2
标识
DOI:10.1089/big.2022.0201
摘要

Organizations have been investing in analytics relying on internal and external data to gain a competitive advantage. However, the legal and regulatory acts imposed nationally and internationally have become a challenge, especially for highly regulated sectors such as health or finance/banking. Data handlers such as Facebook and Amazon have already sustained considerable fines or are under investigation due to violations of data governance. The era of big data has further intensified the challenges of minimizing the risk of data loss by introducing the dimensions of Volume, Velocity, and Variety into confidentiality. Although Volume and Velocity have been extensively researched, Variety, "the ugly duckling" of big data, is often neglected and difficult to solve, thus increasing the risk of data exposure and data loss. In mitigating the risk of data exposure and data loss in this article, a framework is proposed to utilize algorithmic classification and workflow capabilities to provide a consistent approach toward data evaluations across the organizations. A rule-based system, implementing the corporate data classification policy, will minimize the risk of exposure by facilitating users to identify the approved guidelines and enforce them quickly. The framework includes an exception handling process with appropriate approval for extenuating circumstances. The system was implemented in a proof of concept working prototype to showcase the capabilities and provide a hands-on experience. The information system was evaluated and accredited by a diverse audience of academics and senior business executives in the fields of security and data management. The audience had an average experience of ∼25 years and amasses a total experience of almost three centuries (294 years). The results confirmed that the 3Vs are of concern and that Variety, with a majority of 90% of the commentators, is the most troubling. In addition to that, with an approximate average of 60%, it was confirmed that appropriate policies, procedure, and prerequisites for classification are in place while implementation tools are lagging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助起风了采纳,获得10
刚刚
上官若男应助绘梨夏衣采纳,获得10
1秒前
大个应助要开心采纳,获得10
1秒前
析界成微完成签到 ,获得积分10
2秒前
万能图书馆应助Autumnuer采纳,获得10
3秒前
ZHIXIANGWENG发布了新的文献求助10
3秒前
缥缈的语雪完成签到 ,获得积分10
3秒前
ZXL发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
隐形曼青应助水獭采纳,获得10
5秒前
骑帅骑不快完成签到,获得积分10
5秒前
映寒完成签到,获得积分10
6秒前
风中高山完成签到,获得积分10
6秒前
6秒前
ZHIXIANGWENG发布了新的文献求助10
7秒前
SciGPT应助nana湘采纳,获得10
7秒前
Orange应助善良诗珊采纳,获得10
8秒前
8秒前
9秒前
library2025发布了新的文献求助10
9秒前
Akim应助ZXL采纳,获得10
9秒前
9秒前
10秒前
十里桃花不徘徊完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
pink完成签到,获得积分20
12秒前
Jessie发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
ZHIXIANGWENG发布了新的文献求助10
14秒前
折柳完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461806
求助须知:如何正确求助?哪些是违规求助? 3055500
关于积分的说明 9048149
捐赠科研通 2745215
什么是DOI,文献DOI怎么找? 1506088
科研通“疑难数据库(出版商)”最低求助积分说明 695974
邀请新用户注册赠送积分活动 695472