Big Data Confidentiality: An Approach Toward Corporate Compliance Using a Rule-Based System

大数据 多样性(控制论) 保密 工作流程 数据治理 公司治理 业务 分析 数据科学 计算机科学 计算机安全 数据挖掘 营销 财务 数据库 数据质量 服务(商务) 人工智能
作者
Georgios Vranopoulos,Nathan Clarke,Shirley Atkinson
出处
期刊:Big data [Mary Ann Liebert, Inc.]
被引量:2
标识
DOI:10.1089/big.2022.0201
摘要

Organizations have been investing in analytics relying on internal and external data to gain a competitive advantage. However, the legal and regulatory acts imposed nationally and internationally have become a challenge, especially for highly regulated sectors such as health or finance/banking. Data handlers such as Facebook and Amazon have already sustained considerable fines or are under investigation due to violations of data governance. The era of big data has further intensified the challenges of minimizing the risk of data loss by introducing the dimensions of Volume, Velocity, and Variety into confidentiality. Although Volume and Velocity have been extensively researched, Variety, "the ugly duckling" of big data, is often neglected and difficult to solve, thus increasing the risk of data exposure and data loss. In mitigating the risk of data exposure and data loss in this article, a framework is proposed to utilize algorithmic classification and workflow capabilities to provide a consistent approach toward data evaluations across the organizations. A rule-based system, implementing the corporate data classification policy, will minimize the risk of exposure by facilitating users to identify the approved guidelines and enforce them quickly. The framework includes an exception handling process with appropriate approval for extenuating circumstances. The system was implemented in a proof of concept working prototype to showcase the capabilities and provide a hands-on experience. The information system was evaluated and accredited by a diverse audience of academics and senior business executives in the fields of security and data management. The audience had an average experience of ∼25 years and amasses a total experience of almost three centuries (294 years). The results confirmed that the 3Vs are of concern and that Variety, with a majority of 90% of the commentators, is the most troubling. In addition to that, with an approximate average of 60%, it was confirmed that appropriate policies, procedure, and prerequisites for classification are in place while implementation tools are lagging.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjwless完成签到,获得积分10
刚刚
zzzzzzzz发布了新的文献求助10
1秒前
2秒前
永恒发布了新的文献求助10
2秒前
科研学徒完成签到,获得积分10
2秒前
DrW1111发布了新的文献求助10
3秒前
贺宝完成签到,获得积分10
4秒前
ZJU完成签到,获得积分10
4秒前
红莲墨生完成签到,获得积分10
5秒前
圣泽同学完成签到,获得积分10
5秒前
星辰大海应助shinn采纳,获得10
7秒前
N型半导体发布了新的文献求助10
8秒前
李物发布了新的文献求助20
9秒前
永恒完成签到,获得积分10
9秒前
Akim应助goofs采纳,获得10
9秒前
9秒前
Owen应助光亮的傲白采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
jia0完成签到,获得积分10
12秒前
Hopelife发布了新的文献求助10
14秒前
李健应助Terry采纳,获得10
14秒前
闹闹完成签到,获得积分10
14秒前
14秒前
tianmeiling完成签到 ,获得积分10
16秒前
16秒前
文文发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
Hello应助DrW1111采纳,获得30
21秒前
IV完成签到,获得积分10
21秒前
shinn发布了新的文献求助10
22秒前
22秒前
flywee完成签到,获得积分10
23秒前
24秒前
wangxin发布了新的文献求助10
25秒前
25秒前
wuludie应助IV采纳,获得10
26秒前
re发布了新的文献求助10
26秒前
香蕉觅云应助jing采纳,获得10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303