Improving prediction model robustness with virtual sample construction for near-infrared spectra analysis

稳健性(进化) 过采样 人工智能 模式识别(心理学) 化学 计算机科学 计算机网络 生物化学 带宽(计算) 基因
作者
Yong Hao,Xiyan Li,Chengxiang Zhang
出处
期刊:Analytica Chimica Acta [Elsevier]
卷期号:1279: 341763-341763 被引量:6
标识
DOI:10.1016/j.aca.2023.341763
摘要

In a qualitative analysis of near-infrared spectroscopy (NIRS), when the samples to be analyzed are difficult to obtain or there are few counterexamples, the robustness of the models is poor, resulting in the decline of the generalization ability of the models. In this case, the effective method is to construct virtual samples to achieve the balance of categories. In this contribution, three virtual spectrum construction strategies including Synthetic Minority Oversampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN), and Deep Convolutional Generative Adversarial Network (DCGAN) were explored to deal with the problem of insufficient or imbalanced sample numbers in NIRS analysis. The strategies were tested with the melamine and Yali pears two spectral datasets. The PLS-DA and Correct Recognition Rate (CRR) were used for discriminant model construction and accuracy evaluation, respectively. The results show that SMOTE, ADASYN, and DCGAN processing strategies can all improve the global CRR (CRRglob). The SMOTE and ADASYN can improve the CRR for majority class sample (CRRmaj), but the CRR for minority class sample (CRRmin) has decreased. For the DCGAN method, the CRRglob, CRRmaj, and CRRmin were all improved. The standard deviation of the results of the multiple parallel calculations demonstrates the robustness of DCGAN generation method. Therefore, the DCGAN method has good reliability and practicability, and can increase the robustness and generalization ability of the NIRS model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助清城采纳,获得30
1秒前
小蘑菇应助骄阳似我采纳,获得10
4秒前
4秒前
顾矜应助给我好好读书采纳,获得10
4秒前
眼中浓缩完成签到,获得积分10
6秒前
6秒前
好巧发布了新的文献求助10
7秒前
一抔之土发布了新的文献求助10
9秒前
czh完成签到,获得积分20
9秒前
Ava应助zzzxxx采纳,获得10
9秒前
9秒前
情怀应助666采纳,获得10
11秒前
11秒前
11秒前
1册完成签到,获得积分10
12秒前
无奈斑马完成签到,获得积分10
13秒前
光亮的半山完成签到,获得积分10
13秒前
czh发布了新的文献求助10
13秒前
清城发布了新的文献求助30
13秒前
Juli发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
16秒前
惠子发布了新的文献求助10
17秒前
18秒前
18秒前
牧妙芹发布了新的文献求助30
19秒前
20秒前
21秒前
骄阳似我发布了新的文献求助10
22秒前
dingjianqiang发布了新的文献求助30
22秒前
Swear完成签到 ,获得积分10
22秒前
赵婧秀发布了新的文献求助10
24秒前
laoli2022发布了新的文献求助10
25秒前
25秒前
山谷关注了科研通微信公众号
25秒前
李健应助骄阳似我采纳,获得10
28秒前
28秒前
牧妙芹完成签到,获得积分10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3354312
求助须知:如何正确求助?哪些是违规求助? 2978658
关于积分的说明 8686869
捐赠科研通 2660253
什么是DOI,文献DOI怎么找? 1456531
科研通“疑难数据库(出版商)”最低求助积分说明 674387
邀请新用户注册赠送积分活动 665247