Citizens' acceptance of artificial intelligence in public services: Evidence from a conjoint experiment about processing permit applications

感知 经验证据 政府(语言学) 情感(语言学) 联合分析 透明度(行为) 营销 业务 计算机科学 心理学 经济 偏爱 计算机安全 哲学 神经科学 微观经济学 认识论 沟通 语言学
作者
László Horváth,Oliver James,Susan Banducci,Ana Beduschi
出处
期刊:Government Information Quarterly [Elsevier]
卷期号:40 (4): 101876-101876 被引量:10
标识
DOI:10.1016/j.giq.2023.101876
摘要

Citizens' acceptance of artificial intelligence (AI) in public service delivery is important for its legitimate and effective use by government. Human involvement in AI systems has been suggested as a way to boost citizens' acceptance and perceptions of these systems' fairness. However, there is little empirical evidence to assess these claims. To address this gap, we conducted a pre-registered conjoint experiment in the UK regarding acceptance of AI in processing public permits: for immigration visas and parking permits. We hypothesise that greater human involvement boosts acceptance of AI in decision-making and associated perceptions of its fairness. We further hypothesise that greater human involvement mitigates the negative impact of certain AI features, such as inaccuracy, high cost, or data sharing. From our study, we find that more human involvement tends to increase acceptance, and that perceptions of fairness were less influenced. Yet, when substantial human discretion was introduced in parking permit scenarios, respondents preferred more limited human input. We found little evidence that human involvement moderates the impact of AI's unfavourable attributes. System-level factors such as high accuracy, the presence of an appeals system, increased transparency, reduced cost, non-sharing of data, and the absence of private company involvement all boost both acceptance and perceived procedural fairness. We find limited evidence that individual characteristics affect these results. The findings show how the design of AI systems can increase its acceptability to citizens for use in public services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jyy应助李好人采纳,获得10
1秒前
二三发布了新的文献求助10
1秒前
yangyangyang完成签到,获得积分10
1秒前
2秒前
传统的复天完成签到,获得积分10
2秒前
温暖霸完成签到,获得积分10
2秒前
3秒前
群阿完成签到,获得积分10
3秒前
xixi发布了新的文献求助10
3秒前
Jeffery426完成签到,获得积分10
3秒前
少雄完成签到,获得积分10
4秒前
文文文完成签到,获得积分10
4秒前
Mercury完成签到,获得积分10
4秒前
小黄油发布了新的文献求助10
5秒前
还是没有锅包肉关注了科研通微信公众号
5秒前
研友_LpvQlZ完成签到,获得积分10
6秒前
wlp鹏完成签到,获得积分10
6秒前
6秒前
请加我XP完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
叶黄戍发布了新的文献求助10
8秒前
香菜皮蛋完成签到 ,获得积分10
8秒前
百合子完成签到,获得积分10
8秒前
8秒前
shionn完成签到,获得积分10
9秒前
晚心发布了新的文献求助10
10秒前
10秒前
uwasa发布了新的文献求助10
11秒前
机灵晓绿完成签到 ,获得积分10
11秒前
11秒前
靜心完成签到 ,获得积分10
12秒前
转生成为科研糕手完成签到,获得积分10
13秒前
秀丽的曼雁完成签到,获得积分10
13秒前
caicai发布了新的文献求助10
13秒前
linxi完成签到,获得积分10
13秒前
13秒前
啊TiP完成签到,获得积分10
13秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257305
求助须知:如何正确求助?哪些是违规求助? 2899227
关于积分的说明 8304469
捐赠科研通 2568509
什么是DOI,文献DOI怎么找? 1395145
科研通“疑难数据库(出版商)”最低求助积分说明 652952
邀请新用户注册赠送积分活动 630703