已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework

差别隐私 计算机科学 私人信息检索 背景(考古学) 生成模型 混淆 信息隐私 计算机安全 机器学习 人工智能 数据科学 数据挖掘 生成语法 古生物学 生物
作者
Imdad Ullah,Najmul Hassan,Sukhpal Singh Gill,Basem Suleiman,Tariq Ahamed Ahanger,Zawar Shah,Junaid Qadir,Salil S. Kanhere
出处
期刊:Cornell University - arXiv 被引量:4
标识
DOI:10.48550/arxiv.2310.12523
摘要

The generative Artificial Intelligence (AI) tools based on Large Language Models (LLMs) use billions of parameters to extensively analyse large datasets and extract critical private information such as, context, specific details, identifying information etc. This have raised serious threats to user privacy and reluctance to use such tools. This article proposes the conceptual model called PrivChatGPT, a privacy-preserving model for LLMs that consists of two main components i.e., preserving user privacy during the data curation/pre-processing together with preserving private context and the private training process for large-scale data. To demonstrate its applicability, we show how a private mechanism could be integrated into the existing model for training LLMs to protect user privacy; specifically, we employed differential privacy and private training using Reinforcement Learning (RL). We measure the privacy loss and evaluate the measure of uncertainty or randomness once differential privacy is applied. It further recursively evaluates the level of privacy guarantees and the measure of uncertainty of public database and resources, during each update when new information is added for training purposes. To critically evaluate the use of differential privacy for private LLMs, we hypothetically compared other mechanisms e..g, Blockchain, private information retrieval, randomisation, for various performance measures such as the model performance and accuracy, computational complexity, privacy vs. utility etc. We conclude that differential privacy, randomisation, and obfuscation can impact utility and performance of trained models, conversely, the use of ToR, Blockchain, and PIR may introduce additional computational complexity and high training latency. We believe that the proposed model could be used as a benchmark for proposing privacy preserving LLMs for generative AI tools.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助liweiDr采纳,获得10
刚刚
科研通AI2S应助Jessica采纳,获得10
1秒前
Ziming发布了新的文献求助10
6秒前
xuhaohao完成签到 ,获得积分10
9秒前
fareless完成签到 ,获得积分10
12秒前
15秒前
科研通AI2S应助sqHALO采纳,获得10
15秒前
团装完成签到 ,获得积分10
21秒前
liweiDr发布了新的文献求助10
22秒前
Gatita完成签到 ,获得积分10
23秒前
tufei完成签到,获得积分10
25秒前
火星上问柳完成签到,获得积分10
29秒前
29秒前
听风发布了新的文献求助10
31秒前
32秒前
33秒前
天才幸运鱼完成签到,获得积分10
35秒前
优美的冰巧完成签到 ,获得积分10
36秒前
星辰大海应助平淡夏云采纳,获得10
36秒前
dalin发布了新的文献求助10
38秒前
刚子发布了新的文献求助10
38秒前
39秒前
希望天下0贩的0应助Steve采纳,获得10
40秒前
王忠凯发布了新的文献求助10
41秒前
fenmar发布了新的文献求助10
42秒前
炒栗子发布了新的文献求助10
43秒前
可爱的函函应助醒醒采纳,获得10
44秒前
打打应助科研通管家采纳,获得10
45秒前
慕青应助科研通管家采纳,获得10
45秒前
田様应助科研通管家采纳,获得10
45秒前
45秒前
46秒前
疯狂的娃哈哈完成签到 ,获得积分10
47秒前
加菲丰丰应助刚子采纳,获得20
48秒前
Steve发布了新的文献求助10
50秒前
asd发布了新的文献求助10
54秒前
吳凰完成签到 ,获得积分10
54秒前
Steve完成签到,获得积分10
55秒前
ding应助liweiDr采纳,获得10
55秒前
56秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139341
求助须知:如何正确求助?哪些是违规求助? 2790257
关于积分的说明 7794680
捐赠科研通 2446703
什么是DOI,文献DOI怎么找? 1301325
科研通“疑难数据库(出版商)”最低求助积分说明 626124
版权声明 601109