SSENet: A Multiscale 3-D Convolutional Neural Network for InSAR Shift Estimation

计算机科学 干涉合成孔径雷达 合成孔径雷达 人工智能 卷积神经网络 干涉测量 遥感 噪音(视频) 去相关 计算机视觉 数字高程模型 绝对相位 模式识别(心理学) 相位噪声 地质学 图像(数学) 光学 物理
作者
Yulun Wu,Jili Wang,Heng Zhang,Fengjun Zhao,Wei Xiang,H. Li,Huaishuai Wang,Lianshuo An
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3326558
摘要

The interferometric synthetic aperture radar (InSAR) image shift measurement technique is of great significance in processing high-precision digital elevation model (DEM) generation and deformation measurements. It can be used in steps such as image fine coregistration, interferometric phase unwrapping and absolute phase calibration in the InSAR processing flow without an external DEM. However, the shifts estimated by current methods are of low resolution and have high measurement noise, which may have adverse impacts on subsequent applications. In this paper, a lightweight, high-resolution and low-noise interferometric stereo-radargrammetric shift estimation network (SSENet) is proposed to solve the aforementioned problems. It introduces deep learning technology to the InSAR shift estimation task for the first time. We propose forming multiscale 3D coherence coefficient cubes by projecting the shift values of the images onto the third dimension and then using a 3D convolutional network for multiscale fusion and encoding, followed by decoding with linear layers. In addition, a dataset generation and augmentation scheme based on real data is designed for model training and evaluation. Several sets of real SAR images from different regions of the world were used to evaluate SSENet. Compared with the typical coherent cross-correlation approach, SSENet reduces the mean absolute error of the estimated shifts by approximately 79% while improving the resolution by a factor of 4×4, making it possible to restore the absolute interferometric phase. Finally, we demonstrate a stitching strategy for processing large-scale SAR images and discuss the multiple potential uses of SSENet in the InSAR processing chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听风发布了新的文献求助10
刚刚
大华完成签到,获得积分10
1秒前
郮东发布了新的文献求助10
2秒前
Joker完成签到,获得积分10
3秒前
hanghang完成签到,获得积分10
3秒前
4秒前
夏樱桐完成签到,获得积分10
5秒前
深情安青应助听风采纳,获得10
5秒前
饽饽饽饽完成签到,获得积分10
7秒前
玫瑰枪杀案_完成签到,获得积分10
7秒前
北方发布了新的文献求助10
7秒前
T012发布了新的文献求助10
8秒前
Jasper应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
是木易呀应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
虾米应助科研通管家采纳,获得40
10秒前
FashionBoy应助科研通管家采纳,获得30
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
险胜应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
11秒前
12秒前
12秒前
12秒前
buno应助huang采纳,获得10
12秒前
蔫蔫发布了新的文献求助10
13秒前
深爱不疑发布了新的文献求助10
14秒前
李爱国应助我服有点黑采纳,获得10
14秒前
郝宝真发布了新的文献求助10
15秒前
沙拉发布了新的文献求助10
15秒前
小强发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
18秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334409
求助须知:如何正确求助?哪些是违规求助? 2963607
关于积分的说明 8610762
捐赠科研通 2642584
什么是DOI,文献DOI怎么找? 1446799
科研通“疑难数据库(出版商)”最低求助积分说明 670421
邀请新用户注册赠送积分活动 658608