SSENet: A Multiscale 3-D Convolutional Neural Network for InSAR Shift Estimation

计算机科学 干涉合成孔径雷达 合成孔径雷达 人工智能 卷积神经网络 干涉测量 遥感 噪音(视频) 去相关 计算机视觉 数字高程模型 绝对相位 模式识别(心理学) 相位噪声 地质学 图像(数学) 光学 物理
作者
Yulun Wu,Jili Wang,Heng Zhang,Fengjun Zhao,Wei Xiang,H. Li,Huaishuai Wang,Lianshuo An
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2023.3326558
摘要

The interferometric synthetic aperture radar (InSAR) image shift measurement technique is of great significance in processing high-precision digital elevation model (DEM) generation and deformation measurements. It can be used in steps such as image fine coregistration, interferometric phase unwrapping and absolute phase calibration in the InSAR processing flow without an external DEM. However, the shifts estimated by current methods are of low resolution and have high measurement noise, which may have adverse impacts on subsequent applications. In this paper, a lightweight, high-resolution and low-noise interferometric stereo-radargrammetric shift estimation network (SSENet) is proposed to solve the aforementioned problems. It introduces deep learning technology to the InSAR shift estimation task for the first time. We propose forming multiscale 3D coherence coefficient cubes by projecting the shift values of the images onto the third dimension and then using a 3D convolutional network for multiscale fusion and encoding, followed by decoding with linear layers. In addition, a dataset generation and augmentation scheme based on real data is designed for model training and evaluation. Several sets of real SAR images from different regions of the world were used to evaluate SSENet. Compared with the typical coherent cross-correlation approach, SSENet reduces the mean absolute error of the estimated shifts by approximately 79% while improving the resolution by a factor of 4×4, making it possible to restore the absolute interferometric phase. Finally, we demonstrate a stitching strategy for processing large-scale SAR images and discuss the multiple potential uses of SSENet in the InSAR processing chain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lucky22关注了科研通微信公众号
2秒前
3秒前
4秒前
Jasper应助刘春秀采纳,获得10
4秒前
5秒前
Kismet发布了新的文献求助10
6秒前
7秒前
StonesKing发布了新的文献求助10
7秒前
dn发布了新的文献求助10
7秒前
爆米花应助淡淡的新之采纳,获得10
7秒前
刻苦的坤发布了新的文献求助10
7秒前
小蘑菇应助球球采纳,获得10
9秒前
9秒前
victor1995888完成签到,获得积分10
11秒前
SciGPT应助LiuXinping采纳,获得10
12秒前
科研小白完成签到,获得积分10
12秒前
烟花应助言无间采纳,获得10
12秒前
marketing完成签到,获得积分10
13秒前
可爱寻菡完成签到,获得积分20
13秒前
13秒前
JamesPei应助会武功的阿吉采纳,获得10
13秒前
羊羊羊发布了新的文献求助10
13秒前
张宇发布了新的文献求助30
14秒前
华仔应助zrw采纳,获得10
15秒前
18秒前
tingz发布了新的文献求助10
18秒前
李健的小迷弟应助marketing采纳,获得10
18秒前
ttt完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
DAYAN完成签到,获得积分10
20秒前
shy完成签到,获得积分10
21秒前
21秒前
21秒前
希望天下0贩的0应助张宇采纳,获得10
22秒前
斯文败类应助搞怪的易槐采纳,获得10
23秒前
23秒前
underunder完成签到,获得积分10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952814
求助须知:如何正确求助?哪些是违规求助? 3498265
关于积分的说明 11091101
捐赠科研通 3228832
什么是DOI,文献DOI怎么找? 1785147
邀请新用户注册赠送积分活动 869189
科研通“疑难数据库(出版商)”最低求助积分说明 801367