MECE: a method for enhancing the catalytic efficiency of glycoside hydrolase based on deep neural networks and molecular evolution

催化效率 糖苷水解酶 人工神经网络 突变体 糖苷 人工智能 深层神经网络 计算机科学 化学 计算生物学 催化作用 生物化学 组合化学 机器学习 生物 立体化学 基因
作者
Hanqing Liu,Feifei Guan,Tuoyu Liu,Lixin Yang,Lingxi Fan,Xiaoqing Liu,Huiying Luo,Ningfeng Wu,Bin Yao,Jian Tian,Huoqing Huang
出处
期刊:Science Bulletin [Elsevier BV]
卷期号:68 (22): 2793-2805 被引量:4
标识
DOI:10.1016/j.scib.2023.09.039
摘要

The demand for high efficiency glycoside hydrolases (GHs) is on the rise due to their various industrial applications. However, improving the catalytic efficiency of an enzyme remains a challenge. This investigation showcases the capability of a deep neural network and method for enhancing the catalytic efficiency (MECE) platform to predict mutations that improve catalytic activity in GHs. The MECE platform includes DeepGH, a deep learning model that is able to identify GH families and functional residues. This model was developed utilizing 119 GH family protein sequences obtained from the Carbohydrate-Active enZYmes (CAZy) database. After undergoing ten-fold cross-validation, the DeepGH models exhibited a predictive accuracy of 96.73%. The utilization of gradient-weighted class activation mapping (Grad-CAM) was used to aid us in comprehending the classification features, which in turn facilitated the creation of enzyme mutants. As a result, the MECE platform was validated with the development of CHIS1754-MUT7, a mutant that boasts seven amino acid substitutions. The kcat/Km of CHIS1754-MUT7 was found to be 23.53 times greater than that of the wild type CHIS1754. Due to its high computational efficiency and low experimental cost, this method offers significant advantages and presents a novel approach for the intelligent design of enzyme catalytic efficiency. As a result, it holds great promise for a wide range of applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
Joseph完成签到,获得积分10
刚刚
123完成签到,获得积分10
1秒前
白桃乌龙应助zq1992nl采纳,获得10
1秒前
万能图书馆应助笨笨念真采纳,获得10
2秒前
JarrodAlgren发布了新的文献求助10
2秒前
科目三应助唐唐采纳,获得10
3秒前
精明的中蓝完成签到,获得积分10
3秒前
3秒前
安静落雁完成签到 ,获得积分10
3秒前
李爱国应助年轻的白梦采纳,获得10
4秒前
02完成签到,获得积分10
4秒前
卓卓完成签到,获得积分10
5秒前
5秒前
5秒前
obsession发布了新的文献求助10
5秒前
三火发布了新的文献求助10
5秒前
6秒前
conlensce发布了新的文献求助10
6秒前
西域卧虎完成签到 ,获得积分10
6秒前
6秒前
上官若男应助16PRO采纳,获得10
7秒前
研友_Zl1ND8完成签到,获得积分10
7秒前
8秒前
赵小米发布了新的文献求助10
8秒前
灿烂千阳完成签到,获得积分10
9秒前
希雅完成签到 ,获得积分10
9秒前
艾莉完成签到,获得积分10
9秒前
Yy发布了新的文献求助10
10秒前
10秒前
小吴同志完成签到,获得积分10
11秒前
golden完成签到,获得积分10
11秒前
小朱完成签到,获得积分10
11秒前
热心的忆山完成签到,获得积分10
12秒前
crystaler发布了新的文献求助10
12秒前
柒玥完成签到,获得积分10
12秒前
大个应助房天川采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
The organometallic chemistry of the transition metals 7th 666
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Handbook of Laboratory Animal Science 300
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3700765
求助须知:如何正确求助?哪些是违规求助? 3251047
关于积分的说明 9872817
捐赠科研通 2963115
什么是DOI,文献DOI怎么找? 1624972
邀请新用户注册赠送积分活动 769625
科研通“疑难数据库(出版商)”最低求助积分说明 742423