PLD-AL: Pseudo-label Divergence-Based Active Learning in Carotid Intima-Media Segmentation for Ultrasound Images

计算机科学 分割 人工智能 分歧(语言学) 深度学习 可视化 超声波 人工神经网络 机器学习 计算机视觉 模式识别(心理学) 放射科 医学 语言学 哲学
作者
Yucheng Tang,Yipeng Hu,Jing Li,Lin Hu,Xiang Xu,Ke Huang,Hongxiang Lin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 57-67
标识
DOI:10.1007/978-3-031-43895-0_6
摘要

Segmentation of the carotid intima-media (CIM) offers more precise morphological evidence for obesity and atherosclerotic disease compared to the method that measures its thickness and roughness during routine ultrasound scans. Although advanced deep learning technology has shown promise in enabling automatic and accurate medical image segmentation, the lack of a large quantity of high-quality CIM labels may hinder the model training process. Active learning (AL) tackles this issue by iteratively annotating the subset whose labels contribute the most to the training performance at each iteration. However, this approach substantially relies on the expert's experience, particularly when addressing ambiguous CIM boundaries that may be present in real-world ultrasound images. Our proposed approach, called pseudo-label divergence-based active learning (PLD-AL), aims to train segmentation models using a gradually enlarged and refined labeled pool. The approach has an outer and an inner loops: The outer loop calculates the Kullback-Leibler (KL) divergence of predictive pseudo-labels related to two consecutive AL iterations. It determines which portion of the unlabeled pool should be annotated by an expert. The inner loop trains two networks: The student network is fully trained on the current labeled pool, while the teacher network is weighted upon itself and the student one, ultimately refining the labeled pool. We evaluated our approach using both the Carotid Ultrasound Boundary Study dataset and an in-house dataset from Children's Hospital, Zhejiang University School of Medicine. Our results demonstrate that our approach outperforms state-of-the-art AL approaches. Furthermore, the visualization results show that our approach less over-estimates the CIM area than the rest methods, especially for severely ambiguous ultrasound images at the thickness direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
YepbingCHOI发布了新的文献求助10
刚刚
2秒前
2秒前
2秒前
3秒前
嗯很好发布了新的文献求助10
3秒前
12完成签到,获得积分10
3秒前
wwqdd完成签到,获得积分10
3秒前
3秒前
可爱的函函应助上进生采纳,获得10
4秒前
Lucas应助上进生采纳,获得10
4秒前
4秒前
5秒前
JFP发布了新的文献求助10
6秒前
欣慰的血茗完成签到,获得积分10
8秒前
英俊的铭应助喔喔佳佳L采纳,获得20
8秒前
苹果骑士发布了新的文献求助10
8秒前
xixi发布了新的文献求助10
8秒前
ad完成签到,获得积分10
9秒前
10秒前
耶zyf完成签到,获得积分10
10秒前
Xiaoming85发布了新的文献求助10
10秒前
11秒前
11秒前
英姑应助Joy采纳,获得10
12秒前
12秒前
13秒前
13秒前
wyx完成签到,获得积分10
14秒前
14秒前
qq发布了新的文献求助10
14秒前
15秒前
xiaoxiaoqi完成签到,获得积分10
15秒前
chenqi发布了新的文献求助20
16秒前
恋空发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
ahua15s发布了新的文献求助10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
The Bourse of Babylon: market quotations in the astronomical diaries of Babylonia 500
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308852
求助须知:如何正确求助?哪些是违规求助? 2942301
关于积分的说明 8507956
捐赠科研通 2617252
什么是DOI,文献DOI怎么找? 1430026
科研通“疑难数据库(出版商)”最低求助积分说明 663984
邀请新用户注册赠送积分活动 649215