A Multi-task Network for Anatomy Identification in Endoscopic Pituitary Surgery

计算机科学 分割 人工智能 鉴定(生物学) 任务(项目管理) 质心 垂体腺瘤 计算机视觉 模式识别(心理学) 医学 病理 生物 腺瘤 植物 经济 管理
作者
Adrito Das,Danyal Z. Khan,Simon C. Williams,John Hanrahan,Anouk Borg,Neil Dorward,Sophia Bano,Hani J. Marcus,Danail Stoyanov
出处
期刊:Lecture Notes in Computer Science 卷期号:: 472-482 被引量:6
标识
DOI:10.1007/978-3-031-43996-4_45
摘要

Pituitary tumours are in an anatomically dense region of the body, and often distort or encase the surrounding critical structures. This, in combination with anatomical variations and limitations imposed by endoscope technology, makes intra-operative identification and protection of these structures challenging. Advances in machine learning have allowed for the opportunity to automatically identifying these anatomical structures within operative videos. However, to the best of the authors' knowledge, this remains an unaddressed problem in the sellar phase of endoscopic pituitary surgery. In this paper, PAINet (Pituitary Anatomy Identification Network), a multi-task network capable of identifying the ten critical anatomical structures, is proposed. PAINet jointly learns: (1) the semantic segmentation of the two most prominent, largest, and frequently occurring structures (sella and clival recess); and (2) the centroid detection of the remaining eight less prominent, smaller, and less frequently occurring structures. PAINet utilises an EfficientNetB3 encoder and a U-Net++ decoder with a convolution layer for segmentation and pooling layer for detection. A dataset of 64-videos (635 images) were recorded, and annotated for anatomical structures through multi-round expert consensus. Implementing 5-fold cross-validation, PAINet achieved 66.1% and 54.1% IoU for sella and clival recess semantic segmentation respectively, and 53.2% MPCK-20% for centroid detection of the remaining eight structures, improving on single-task performances. This therefore demonstrates automated identification of anatomical critical structures in the sellar phase of endoscopic pituitary surgery is possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助栗子采纳,获得10
1秒前
rekill2完成签到,获得积分20
1秒前
leo227完成签到,获得积分10
1秒前
1秒前
3秒前
科目三应助peanut采纳,获得10
3秒前
任梁辰完成签到,获得积分10
4秒前
4秒前
drhwang完成签到,获得积分10
5秒前
搜集达人应助NoobMasterZYF采纳,获得10
5秒前
Chen发布了新的文献求助10
5秒前
脑洞疼应助机灵的觅山采纳,获得10
6秒前
喵喵喵大人完成签到,获得积分10
6秒前
7秒前
执着的刺猬完成签到 ,获得积分10
7秒前
独狼完成签到 ,获得积分10
8秒前
桐桐应助WC采纳,获得10
8秒前
VitoLi发布了新的文献求助10
9秒前
yuruibo完成签到,获得积分10
10秒前
10秒前
10秒前
醉仙完成签到,获得积分20
12秒前
Nansen发布了新的文献求助10
12秒前
12秒前
Chen完成签到,获得积分20
13秒前
13秒前
xzh完成签到,获得积分10
14秒前
14秒前
香蕉觅云应助执着谷兰采纳,获得10
15秒前
15秒前
Ava应助顾思凡采纳,获得10
16秒前
17秒前
19秒前
搞怪羊发布了新的文献求助10
19秒前
19秒前
WC发布了新的文献求助10
20秒前
20秒前
20秒前
小马儿完成签到 ,获得积分10
20秒前
执着的刺猬关注了科研通微信公众号
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961973
求助须知:如何正确求助?哪些是违规求助? 3508240
关于积分的说明 11139976
捐赠科研通 3240869
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352