已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Objective Optimization for Sparse Deep Multi-Task Learning

任务(项目管理) 计算机科学 人工智能 机器学习 工程类 系统工程
作者
Sèdjro Salomon Hotegni,Sebastian Peitz,M.D. Berkemeier
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2308.12243
摘要

Different conflicting optimization criteria arise naturally in various Deep Learning scenarios. These can address different main tasks (i.e., in the setting of Multi-Task Learning), but also main and secondary tasks such as loss minimization versus sparsity. The usual approach is a simple weighting of the criteria, which formally only works in the convex setting. In this paper, we present a Multi-Objective Optimization algorithm using a modified Weighted Chebyshev scalarization for training Deep Neural Networks (DNNs) with respect to several tasks. By employing this scalarization technique, the algorithm can identify all optimal solutions of the original problem while reducing its complexity to a sequence of single-objective problems. The simplified problems are then solved using an Augmented Lagrangian method, enabling the use of popular optimization techniques such as Adam and Stochastic Gradient Descent, while efficaciously handling constraints. Our work aims to address the (economical and also ecological) sustainability issue of DNN models, with a particular focus on Deep Multi-Task models, which are typically designed with a very large number of weights to perform equally well on multiple tasks. Through experiments conducted on two Machine Learning datasets, we demonstrate the possibility of adaptively sparsifying the model during training without significantly impacting its performance, if we are willing to apply task-specific adaptations to the network weights. Code is available at https://github.com/salomonhotegni/MDMTN

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
湖里发布了新的文献求助10
刚刚
bioglia发布了新的文献求助10
3秒前
4秒前
慕青应助笛卡尔采纳,获得10
5秒前
7秒前
IP190237完成签到,获得积分10
9秒前
852发布了新的文献求助20
9秒前
10秒前
boshazhiwu完成签到 ,获得积分10
10秒前
10秒前
侠医2012完成签到,获得积分10
11秒前
吴未发布了新的文献求助10
13秒前
顺利发布了新的文献求助10
16秒前
丘比特应助CryBill采纳,获得10
16秒前
喵喵发布了新的文献求助10
17秒前
彭于晏应助直率香寒采纳,获得10
24秒前
FashionBoy应助霸气的瑛采纳,获得10
28秒前
31秒前
xiaoxiang完成签到,获得积分10
31秒前
隐形曼青应助bioglia采纳,获得10
31秒前
JamesPei应助歌尽桃花坞采纳,获得10
32秒前
33秒前
33秒前
33秒前
33秒前
打打应助蓝胖子采纳,获得10
33秒前
科研通AI2S应助喵喵采纳,获得10
34秒前
???完成签到,获得积分10
35秒前
彭于晏应助Fortune采纳,获得10
36秒前
CryBill发布了新的文献求助10
36秒前
36秒前
36秒前
难过山芙完成签到 ,获得积分20
38秒前
霸气的瑛发布了新的文献求助10
40秒前
xip发布了新的文献求助10
40秒前
长孙幼荷发布了新的文献求助10
40秒前
zzt发布了新的文献求助10
40秒前
科目三应助WangShIbei采纳,获得10
41秒前
九陇集团少帅完成签到,获得积分20
41秒前
44秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The diagnosis of sex before birth using cells from the amniotic fluid (a preliminary report) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229401
求助须知:如何正确求助?哪些是违规求助? 2877137
关于积分的说明 8197812
捐赠科研通 2544458
什么是DOI,文献DOI怎么找? 1374396
科研通“疑难数据库(出版商)”最低求助积分说明 646956
邀请新用户注册赠送积分活动 621749