Multi-Objective Optimization for Sparse Deep Multi-Task Learning

任务(项目管理) 计算机科学 人工智能 机器学习 工程类 系统工程
作者
Sèdjro Salomon Hotegni,Sebastian Peitz,M.D. Berkemeier
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2308.12243
摘要

Different conflicting optimization criteria arise naturally in various Deep Learning scenarios. These can address different main tasks (i.e., in the setting of Multi-Task Learning), but also main and secondary tasks such as loss minimization versus sparsity. The usual approach is a simple weighting of the criteria, which formally only works in the convex setting. In this paper, we present a Multi-Objective Optimization algorithm using a modified Weighted Chebyshev scalarization for training Deep Neural Networks (DNNs) with respect to several tasks. By employing this scalarization technique, the algorithm can identify all optimal solutions of the original problem while reducing its complexity to a sequence of single-objective problems. The simplified problems are then solved using an Augmented Lagrangian method, enabling the use of popular optimization techniques such as Adam and Stochastic Gradient Descent, while efficaciously handling constraints. Our work aims to address the (economical and also ecological) sustainability issue of DNN models, with a particular focus on Deep Multi-Task models, which are typically designed with a very large number of weights to perform equally well on multiple tasks. Through experiments conducted on two Machine Learning datasets, we demonstrate the possibility of adaptively sparsifying the model during training without significantly impacting its performance, if we are willing to apply task-specific adaptations to the network weights. Code is available at https://github.com/salomonhotegni/MDMTN

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助xx采纳,获得10
1秒前
大豪子发布了新的文献求助30
1秒前
李繁蕊发布了新的文献求助10
1秒前
5秒前
5秒前
5秒前
5秒前
橘柚完成签到 ,获得积分10
6秒前
zmmmm发布了新的文献求助10
6秒前
领导范儿应助温言采纳,获得10
6秒前
思源应助OvO采纳,获得10
8秒前
迷糊发布了新的文献求助30
9秒前
LY发布了新的文献求助10
10秒前
zzz完成签到,获得积分10
10秒前
KimJongUn完成签到,获得积分10
10秒前
12秒前
12秒前
zy完成签到,获得积分10
13秒前
开心果子发布了新的文献求助10
13秒前
云痴子完成签到,获得积分10
14秒前
SciGPT应助粥粥采纳,获得10
14秒前
14秒前
14秒前
15秒前
苏源完成签到,获得积分10
15秒前
wu关闭了wu文献求助
15秒前
15秒前
16秒前
16秒前
17秒前
17秒前
17秒前
Shawn完成签到,获得积分10
18秒前
yltstt完成签到,获得积分10
19秒前
李小新发布了新的文献求助10
19秒前
成梦发布了新的文献求助10
20秒前
乐乐应助xuex1采纳,获得10
20秒前
蜂鸟5156发布了新的文献求助10
20秒前
李爱国应助VDC采纳,获得10
21秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808