Multi-Objective Optimization for Sparse Deep Multi-Task Learning

任务(项目管理) 计算机科学 人工智能 机器学习 工程类 系统工程
作者
Sèdjro Salomon Hotegni,Sebastian Peitz,M.D. Berkemeier
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2308.12243
摘要

Different conflicting optimization criteria arise naturally in various Deep Learning scenarios. These can address different main tasks (i.e., in the setting of Multi-Task Learning), but also main and secondary tasks such as loss minimization versus sparsity. The usual approach is a simple weighting of the criteria, which formally only works in the convex setting. In this paper, we present a Multi-Objective Optimization algorithm using a modified Weighted Chebyshev scalarization for training Deep Neural Networks (DNNs) with respect to several tasks. By employing this scalarization technique, the algorithm can identify all optimal solutions of the original problem while reducing its complexity to a sequence of single-objective problems. The simplified problems are then solved using an Augmented Lagrangian method, enabling the use of popular optimization techniques such as Adam and Stochastic Gradient Descent, while efficaciously handling constraints. Our work aims to address the (economical and also ecological) sustainability issue of DNN models, with a particular focus on Deep Multi-Task models, which are typically designed with a very large number of weights to perform equally well on multiple tasks. Through experiments conducted on two Machine Learning datasets, we demonstrate the possibility of adaptively sparsifying the model during training without significantly impacting its performance, if we are willing to apply task-specific adaptations to the network weights. Code is available at https://github.com/salomonhotegni/MDMTN

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cocofan完成签到 ,获得积分10
3秒前
3秒前
科目三应助妖九笙采纳,获得10
5秒前
6秒前
奥利安费发布了新的文献求助10
7秒前
包容归尘发布了新的文献求助10
8秒前
bkagyin应助liangchenglvliao采纳,获得30
8秒前
小研究员发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
执着怜珊完成签到 ,获得积分10
10秒前
wxy完成签到 ,获得积分10
11秒前
11秒前
W14发布了新的文献求助10
13秒前
体贴汽车发布了新的文献求助10
13秒前
董坤瑶发布了新的文献求助30
13秒前
leslie花花发布了新的文献求助10
14秒前
传奇3应助张雯思采纳,获得10
15秒前
星辰大海应助张雯思采纳,获得10
15秒前
YX完成签到,获得积分10
16秒前
zhouxuefeng发布了新的文献求助10
16秒前
17秒前
谨慎小虾米完成签到,获得积分10
22秒前
隐形曼青应助和尚哥采纳,获得10
22秒前
慕青应助pipi1412采纳,获得20
23秒前
25秒前
leslie花花完成签到,获得积分10
26秒前
科目三应助苹果秋灵采纳,获得10
28秒前
1111发布了新的文献求助10
31秒前
小研究员完成签到,获得积分10
32秒前
33秒前
魔幻大有完成签到 ,获得积分10
33秒前
青水完成签到 ,获得积分10
34秒前
35秒前
汉堡包应助dnnnsns采纳,获得10
36秒前
凉小远完成签到,获得积分10
36秒前
36秒前
vivid完成签到,获得积分10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967180
求助须知:如何正确求助?哪些是违规求助? 3512526
关于积分的说明 11163850
捐赠科研通 3247430
什么是DOI,文献DOI怎么找? 1793831
邀请新用户注册赠送积分活动 874650
科研通“疑难数据库(出版商)”最低求助积分说明 804494