A survey on uncertainty reasoning and quantification in belief theory and its application to deep learning

计算机科学 人工智能 桥接(联网) 不确定度量化 机器学习 代表(政治) 信念修正 证据推理法 深度学习 管理科学 商业决策图 决策支持系统 计算机网络 政治 政治学 法学 经济
作者
Zhen Guo,Zelin Wan,Qisheng Zhang,Xujiang Zhao,Qi Zhang,Lance Kaplan,Audun Jøsang,Dong Hyun Jeong,Feng Chen,Jin-Hee Cho
出处
期刊:Information Fusion [Elsevier]
卷期号:101: 101987-101987 被引量:4
标识
DOI:10.1016/j.inffus.2023.101987
摘要

An in-depth understanding of uncertainty is the first step to making effective decisions under uncertainty. Machine/deep learning (ML/DL) has been hugely leveraged to solve complex problems involved with processing high-dimensional data. However, reasoning and quantifying different uncertainties to achieve effective decision-making have been much less explored in ML/DL than in other Artificial Intelligence (AI) domains. In particular, belief/evidence theories have been studied in Knowledge representation and reasoning (KRR) since the 1960s to reason and measure uncertainties to enhance decision-making effectiveness. Based on our in-depth literature review, only a few studies have leveraged mature uncertainty research in belief/evidence theories in ML/DL to tackle complex problems under different types of uncertainty. Our present survey paper discusses major belief theories and their core ideas dealing with uncertainty causes and types and quantifying them, along with the discussions of their applicability in ML/DL. Particularly, we discuss three main approaches leveraging belief theories in Deep Neural Networks (DNNs), including Evidential DNNs, Fuzzy DNNs, and Rough DNNs, in terms of their uncertainty causes, types, and quantification methods along with their applicability in diverse problem domains. Through an in-depth understanding of the extensive survey on this topic, we discuss insights, lessons learned, limitations of the current state-of-the-art bridging belief theories and ML/DL, and future research directions. This paper conducts an extensive survey by bridging belief theories and deep learning in reasoning and quantifying uncertainty to help researchers initiate uncertainty and decision-making research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯杰发布了新的文献求助30
2秒前
佳佳佳完成签到,获得积分10
3秒前
4秒前
情怀应助科研通管家采纳,获得10
4秒前
羊木完成签到,获得积分10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
动次打次应助科研通管家采纳,获得30
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
5秒前
5秒前
姝飞糊涂发布了新的文献求助10
5秒前
llbeyond完成签到,获得积分0
7秒前
8秒前
Jasper应助冯杰采纳,获得10
9秒前
abc发布了新的文献求助10
10秒前
11秒前
13秒前
13秒前
打打应助xmyyy采纳,获得10
14秒前
gxy发布了新的文献求助10
14秒前
lll发布了新的文献求助10
18秒前
abc完成签到,获得积分10
18秒前
LIUDEHUA发布了新的文献求助10
18秒前
科研通AI2S应助有匪军子采纳,获得10
20秒前
ztll发布了新的文献求助100
20秒前
20秒前
21秒前
22秒前
思源应助迅速宛筠采纳,获得10
23秒前
所所应助lll采纳,获得10
24秒前
patato发布了新的文献求助10
24秒前
英俊的铭应助杨裕农采纳,获得10
25秒前
天天喝咖啡完成签到,获得积分10
25秒前
彦0823完成签到,获得积分20
25秒前
krkr完成签到,获得积分10
26秒前
xmyyy发布了新的文献求助10
28秒前
30秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Product Class 33: N-Arylhydroxylamines 300
Machine Learning in Chemistry 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388143
求助须知:如何正确求助?哪些是违规求助? 3000598
关于积分的说明 8792342
捐赠科研通 2686639
什么是DOI,文献DOI怎么找? 1471747
科研通“疑难数据库(出版商)”最低求助积分说明 680498
邀请新用户注册赠送积分活动 673224