电导率
钙钛矿(结构)
离子电导率
八面体
电化学
雅恩-泰勒效应
锂(药物)
扩散
电解质
离子
快离子导体
材料科学
分析化学(期刊)
化学
晶体结构
结晶学
物理化学
热力学
电极
医学
物理
有机化学
色谱法
内分泌学
作者
Yoshiyuki Inaguma,Akihisa Aimi,Takahiro Ao,Yosuke Hamasaki,Daisuke Mori,Koichiro Ueda,Minoru Ikeda,Takahisa Ohno,Kazutaka Mitsuishi
标识
DOI:10.1021/acs.jpcc.3c02880
摘要
We synthesized polycrystalline perovskite-type Li-ion-conducting oxides (general formula: ABO3), Sr0.5–xLi0.3+2xTi0.3Ta0.7O3 (x = 0.030–0.100), and assessed their crystal structure, microstructure, ionic conductivity, and electrochemical stability. Based on first-principles calculations, local structure changes accompanied by Li-ion diffusion were discussed. It was found that the average structure of Sr0.5–xLi0.3+2xTi0.3Ta0.7O3 (x = 0.030–0.100) is a cubic perovskite-type one, and at x = 0.042, i.e., Sr0.458Li0.384Ti0.3Ta0.7O3, the highest bulk ionic conductivity and the total ionic conductivity at 300 K were observed to be 1.87 × 10–3 and 1.05 × 10–3 S cm–1, respectively, which are greater than those of La2/3–xLi3xTiO3(LLTO). The first-principles calculations suggested that BO6 octahedra are distorted, and the Li-ion diffusion is assisted by the dynamic distortion of BO6 octahedra coupled with the second-order Jahn–Teller effect. The reduction potential of Sr0.458Li0.384Ti0.3Ta0.7O3 was 1.6–1.7 V vs Li/Li+, which is comparable to that of LLTO. A cell using a Sr0.458Li0.384Ti0.3Ta0.7O3 pellet with a deposited thin film LiCoO2 cathode on one side was successfully operated as a secondary battery at room temperature, indicating that the compound can be applied as a solid electrolyte for Li-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI