Flamingo: Multi-Round Single-Server Secure Aggregation with Applications to Private Federated Learning

计算机科学 MNIST数据库 协议(科学) 弹性(材料科学) 联合学习 会话(web分析) 集合(抽象数据类型) 辍学(神经网络) 还原(数学) 服务器 人工智能 计算机网络 机器学习 分布式计算 人工神经网络 万维网 数学 医学 物理 替代医学 几何学 病理 热力学 程序设计语言
作者
Yiping Ma,Jess Woods,Sebastian Angel,Antigoni Polychroniadou,Tal Rabin
标识
DOI:10.1109/sp46215.2023.10179434
摘要

This paper introduces Flamingo, a system for secure aggregation of data across a large set of clients. In secure aggregation, a server sums up the private inputs of clients and obtains the result without learning anything about the individual inputs beyond what is implied by the final sum. Flamingo focuses on the multi-round setting found in federated learning in which many consecutive summations (averages) of model weights are performed to derive a good model. Previous protocols, such as Bell et al. (CCS '20), have been designed for a single round and are adapted to the federated learning setting by repeating the protocol multiple times. Flamingo eliminates the need for the per-round setup of previous protocols, and has a new lightweight dropout resilience protocol to ensure that if clients leave in the middle of a sum the server can still obtain a meaningful result. Furthermore, Flamingo introduces a new way to locally choose the so-called client neighborhood introduced by Bell et al. These techniques help Flamingo reduce the number of interactions between clients and the server, resulting in a significant reduction in the end-to-end runtime for a full training session over prior work. We implement and evaluate Flamingo and show that it can securely train a neural network on the (Extended) MNIST and CIFAR-100 datasets, and the model converges without a loss in accuracy, compared to a non-private federated learning system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默磨墨应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得20
刚刚
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
JamesPei应助科研通管家采纳,获得10
刚刚
刚刚
lilili完成签到 ,获得积分10
刚刚
Lucas应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
Yancy应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助小可爱采纳,获得10
1秒前
耿舒婷完成签到,获得积分10
2秒前
yzz完成签到,获得积分20
2秒前
单凝完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
SYLH应助快乐十八采纳,获得10
5秒前
5秒前
好久不见发布了新的文献求助10
6秒前
淳之风发布了新的文献求助10
6秒前
介于两石之间完成签到,获得积分10
6秒前
7秒前
7秒前
夹心吉吉完成签到,获得积分10
8秒前
ysl关闭了ysl文献求助
8秒前
希望天下0贩的0应助小尤采纳,获得10
8秒前
8秒前
材子发布了新的文献求助10
8秒前
April发布了新的文献求助10
9秒前
小木土发布了新的文献求助10
9秒前
9秒前
谨慎小翠完成签到,获得积分10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552334
求助须知:如何正确求助?哪些是违规求助? 3128516
关于积分的说明 9378234
捐赠科研通 2827604
什么是DOI,文献DOI怎么找? 1554491
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714943