Exploring the authentication of COVID-19 vaccines using Surface-enhanced handheld Raman spectroscopy (SERS) equipped with orbital Raster scattering and machine learning

拉曼光谱 计算机科学 鉴定(生物学) 移动设备 认证(法律) 材料科学 人工智能 纳米技术 光学 物理 计算机安全 植物 生物 操作系统
作者
Megan K. Watson,Dhiya Al-Jumeily,Jason W. Birkett,Iftikhar Khan,Sulaf Assi
标识
DOI:10.1109/dese58274.2023.10100028
摘要

COVID-19 is a novel coronavirus first emerging in Wuhan, China in December 2019 and has since spread rapidly across the globe escalating into a worldwide pandemic causing millions of fatalities. Emergency response to the pandemic included social distancing and isolation measures as well as the escalation of vaccination programmes. The most popular COVID-19 vaccines are nucleic acid-based. The vast spread and struggles in containment of the virus has allowed a gap in the market to emerge for counterfeit vaccines. This study investigates the use of handheld Raman spectroscopy as a method for nucleic acid-based vaccine authentication and utilises machine learning analytics to assess the efficacy of the method. Conventional Raman spectroscopy requires a large workspace, is cumbersome and energy consuming, and handheld Raman systems show limitations with regards to sensitivity and sample detection. Surface Enhanced Raman spectroscopy (SERS) however, shows potential as an authentication technique for vaccines, allowing identification of characteristic nucleic acid bands in spectra. SERS showed strong identification potential through Correlation in Wavelength Space (CWS) with all vaccine samples obtaining an r value of approximately 1 when plotted against themselves. Variance was observed between some excipients and a selected number of DNA-based vaccines, possibly attributed to the stability of the SERS colloid where the colloid-vaccine complex had been measured over different time intervals. Further development of the technique would include optimisation of the SERS method, stability studies and more comprehensive analysis and interpretation of a greater sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
正义的伙伴完成签到,获得积分10
1秒前
文艺醉波发布了新的文献求助10
2秒前
陆菱柒完成签到,获得积分10
3秒前
3秒前
Kannan发布了新的文献求助10
3秒前
lavender发布了新的文献求助10
4秒前
曾泳钧完成签到,获得积分10
4秒前
小情绪发布了新的文献求助10
4秒前
Frank发布了新的文献求助30
4秒前
5秒前
6秒前
111完成签到,获得积分10
8秒前
希希发布了新的文献求助10
8秒前
从容的钢铁侠完成签到,获得积分20
10秒前
在水一方应助lijiauyi1994采纳,获得10
10秒前
多多发SCI发布了新的文献求助30
10秒前
量子星尘发布了新的文献求助10
11秒前
小小发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
英姑应助vsbsjj采纳,获得10
14秒前
chong0919完成签到,获得积分10
14秒前
memo应助默默的巧蕊采纳,获得10
15秒前
17秒前
19秒前
端庄的友瑶完成签到,获得积分10
20秒前
22秒前
十二完成签到,获得积分10
23秒前
23秒前
23秒前
闪999发布了新的文献求助10
23秒前
貔貅完成签到,获得积分10
24秒前
orixero应助杜客采纳,获得10
27秒前
27秒前
旗树树发布了新的文献求助10
27秒前
mmmaosheng完成签到,获得积分10
27秒前
xxfsx应助田猛采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425403
求助须知:如何正确求助?哪些是违规求助? 4539499
关于积分的说明 14168184
捐赠科研通 4457031
什么是DOI,文献DOI怎么找? 2444414
邀请新用户注册赠送积分活动 1435321
关于科研通互助平台的介绍 1412740