亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the authentication of COVID-19 vaccines using Surface-enhanced handheld Raman spectroscopy (SERS) equipped with orbital Raster scattering and machine learning

拉曼光谱 计算机科学 鉴定(生物学) 移动设备 认证(法律) 材料科学 人工智能 纳米技术 光学 物理 计算机安全 植物 生物 操作系统
作者
Megan K. Watson,Dhiya Al-Jumeily,Jason W. Birkett,Iftikhar Khan,Sulaf Assi
标识
DOI:10.1109/dese58274.2023.10100028
摘要

COVID-19 is a novel coronavirus first emerging in Wuhan, China in December 2019 and has since spread rapidly across the globe escalating into a worldwide pandemic causing millions of fatalities. Emergency response to the pandemic included social distancing and isolation measures as well as the escalation of vaccination programmes. The most popular COVID-19 vaccines are nucleic acid-based. The vast spread and struggles in containment of the virus has allowed a gap in the market to emerge for counterfeit vaccines. This study investigates the use of handheld Raman spectroscopy as a method for nucleic acid-based vaccine authentication and utilises machine learning analytics to assess the efficacy of the method. Conventional Raman spectroscopy requires a large workspace, is cumbersome and energy consuming, and handheld Raman systems show limitations with regards to sensitivity and sample detection. Surface Enhanced Raman spectroscopy (SERS) however, shows potential as an authentication technique for vaccines, allowing identification of characteristic nucleic acid bands in spectra. SERS showed strong identification potential through Correlation in Wavelength Space (CWS) with all vaccine samples obtaining an r value of approximately 1 when plotted against themselves. Variance was observed between some excipients and a selected number of DNA-based vaccines, possibly attributed to the stability of the SERS colloid where the colloid-vaccine complex had been measured over different time intervals. Further development of the technique would include optimisation of the SERS method, stability studies and more comprehensive analysis and interpretation of a greater sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛力发布了新的文献求助10
21秒前
24秒前
27秒前
郭志晟完成签到 ,获得积分10
28秒前
YY发布了新的文献求助10
29秒前
能干的人发布了新的文献求助50
32秒前
传奇3应助科研通管家采纳,获得10
34秒前
爆米花应助科研通管家采纳,获得10
34秒前
英姑应助科研通管家采纳,获得10
34秒前
34秒前
羽羽完成签到 ,获得积分10
48秒前
48秒前
flywire发布了新的文献求助200
51秒前
lei发布了新的文献求助10
54秒前
57秒前
Shrine完成签到,获得积分10
1分钟前
Friday完成签到,获得积分10
1分钟前
开心寄松发布了新的文献求助10
1分钟前
xx关闭了xx文献求助
1分钟前
葛力发布了新的文献求助10
1分钟前
两个轮完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
更明发布了新的文献求助10
1分钟前
清爽冬莲完成签到 ,获得积分10
2分钟前
flywire完成签到,获得积分10
2分钟前
葛力发布了新的文献求助10
2分钟前
李爱国应助科研通管家采纳,获得10
2分钟前
cc应助科研通管家采纳,获得10
2分钟前
汉堡包应助更明采纳,获得10
2分钟前
小狗发布了新的文献求助10
2分钟前
kongkai完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
维维完成签到 ,获得积分10
2分钟前
huangwensou发布了新的文献求助10
3分钟前
深情安青应助Sience采纳,获得10
3分钟前
kongkai发布了新的文献求助200
3分钟前
小狗发布了新的文献求助10
3分钟前
zommen完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960064
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128598
捐赠科研通 3238264
什么是DOI,文献DOI怎么找? 1789651
邀请新用户注册赠送积分活动 871846
科研通“疑难数据库(出版商)”最低求助积分说明 803069