Exploring the authentication of COVID-19 vaccines using Surface-enhanced handheld Raman spectroscopy (SERS) equipped with orbital Raster scattering and machine learning

拉曼光谱 计算机科学 鉴定(生物学) 移动设备 认证(法律) 材料科学 人工智能 纳米技术 光学 物理 计算机安全 植物 生物 操作系统
作者
Megan K. Watson,Dhiya Al-Jumeily,Jason W. Birkett,Iftikhar Khan,Sulaf Assi
标识
DOI:10.1109/dese58274.2023.10100028
摘要

COVID-19 is a novel coronavirus first emerging in Wuhan, China in December 2019 and has since spread rapidly across the globe escalating into a worldwide pandemic causing millions of fatalities. Emergency response to the pandemic included social distancing and isolation measures as well as the escalation of vaccination programmes. The most popular COVID-19 vaccines are nucleic acid-based. The vast spread and struggles in containment of the virus has allowed a gap in the market to emerge for counterfeit vaccines. This study investigates the use of handheld Raman spectroscopy as a method for nucleic acid-based vaccine authentication and utilises machine learning analytics to assess the efficacy of the method. Conventional Raman spectroscopy requires a large workspace, is cumbersome and energy consuming, and handheld Raman systems show limitations with regards to sensitivity and sample detection. Surface Enhanced Raman spectroscopy (SERS) however, shows potential as an authentication technique for vaccines, allowing identification of characteristic nucleic acid bands in spectra. SERS showed strong identification potential through Correlation in Wavelength Space (CWS) with all vaccine samples obtaining an r value of approximately 1 when plotted against themselves. Variance was observed between some excipients and a selected number of DNA-based vaccines, possibly attributed to the stability of the SERS colloid where the colloid-vaccine complex had been measured over different time intervals. Further development of the technique would include optimisation of the SERS method, stability studies and more comprehensive analysis and interpretation of a greater sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
腾桑完成签到,获得积分20
1秒前
科研通AI5应助灰灰采纳,获得30
2秒前
呆萌松鼠完成签到,获得积分10
2秒前
受伤灵薇完成签到,获得积分10
2秒前
suibianba应助DustRain采纳,获得10
3秒前
4秒前
5秒前
Kidmuse完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
贾霆发布了新的文献求助10
9秒前
Owen应助安静海菡采纳,获得10
10秒前
chen.发布了新的文献求助10
10秒前
10秒前
lst完成签到,获得积分10
11秒前
祖诗云应助zaddy0905采纳,获得30
11秒前
12秒前
isak发布了新的文献求助10
13秒前
HD完成签到,获得积分10
13秒前
DustRain完成签到,获得积分20
14秒前
14秒前
15秒前
爆米花应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
共享精神应助科研通管家采纳,获得10
16秒前
PurityL发布了新的文献求助10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
17秒前
牛不可完成签到,获得积分10
17秒前
FashionBoy应助科研通管家采纳,获得30
17秒前
领导范儿应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
17秒前
LYSM应助科研通管家采纳,获得20
17秒前
17秒前
xuxieyu完成签到,获得积分10
17秒前
科研小白发布了新的文献求助10
17秒前
小猴同学完成签到 ,获得积分10
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668076
求助须知:如何正确求助?哪些是违规求助? 3226524
关于积分的说明 9769880
捐赠科研通 2936484
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759677
科研通“疑难数据库(出版商)”最低求助积分说明 735474