Exploring the authentication of COVID-19 vaccines using Surface-enhanced handheld Raman spectroscopy (SERS) equipped with orbital Raster scattering and machine learning

拉曼光谱 计算机科学 鉴定(生物学) 移动设备 认证(法律) 材料科学 人工智能 纳米技术 光学 物理 计算机安全 植物 生物 操作系统
作者
Megan K. Watson,Dhiya Al-Jumeily,Jason W. Birkett,Iftikhar Khan,Sulaf Assi
标识
DOI:10.1109/dese58274.2023.10100028
摘要

COVID-19 is a novel coronavirus first emerging in Wuhan, China in December 2019 and has since spread rapidly across the globe escalating into a worldwide pandemic causing millions of fatalities. Emergency response to the pandemic included social distancing and isolation measures as well as the escalation of vaccination programmes. The most popular COVID-19 vaccines are nucleic acid-based. The vast spread and struggles in containment of the virus has allowed a gap in the market to emerge for counterfeit vaccines. This study investigates the use of handheld Raman spectroscopy as a method for nucleic acid-based vaccine authentication and utilises machine learning analytics to assess the efficacy of the method. Conventional Raman spectroscopy requires a large workspace, is cumbersome and energy consuming, and handheld Raman systems show limitations with regards to sensitivity and sample detection. Surface Enhanced Raman spectroscopy (SERS) however, shows potential as an authentication technique for vaccines, allowing identification of characteristic nucleic acid bands in spectra. SERS showed strong identification potential through Correlation in Wavelength Space (CWS) with all vaccine samples obtaining an r value of approximately 1 when plotted against themselves. Variance was observed between some excipients and a selected number of DNA-based vaccines, possibly attributed to the stability of the SERS colloid where the colloid-vaccine complex had been measured over different time intervals. Further development of the technique would include optimisation of the SERS method, stability studies and more comprehensive analysis and interpretation of a greater sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
gaoyankai完成签到,获得积分10
2秒前
共享精神应助文艺的匪采纳,获得10
3秒前
4秒前
威武的橘子完成签到,获得积分10
4秒前
4秒前
xiaobai应助BW打工仔采纳,获得10
5秒前
6秒前
6秒前
banlu完成签到,获得积分10
7秒前
8秒前
斯文败类应助YIDAN采纳,获得10
8秒前
唐欢涛发布了新的文献求助10
8秒前
9秒前
灰灰发布了新的文献求助10
10秒前
bkagyin应助asdfg123采纳,获得10
10秒前
YOLO完成签到,获得积分10
10秒前
dd完成签到,获得积分10
11秒前
11秒前
今后应助Majician采纳,获得10
13秒前
梨老师发布了新的文献求助10
13秒前
13秒前
14秒前
彬彬完成签到,获得积分10
14秒前
15秒前
八月宁静完成签到,获得积分10
15秒前
Herman发布了新的文献求助10
16秒前
yany完成签到,获得积分10
16秒前
16秒前
ZXC发布了新的文献求助10
17秒前
17秒前
Owen应助飘逸的鸿煊采纳,获得10
17秒前
YOLO发布了新的文献求助10
18秒前
重要手机发布了新的文献求助10
19秒前
张利双发布了新的文献求助30
19秒前
WANGYI完成签到,获得积分20
19秒前
20秒前
畅快的鲂发布了新的文献求助30
20秒前
21秒前
21秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442780
求助须知:如何正确求助?哪些是违规求助? 4552892
关于积分的说明 14239536
捐赠科研通 4474264
什么是DOI,文献DOI怎么找? 2451974
邀请新用户注册赠送积分活动 1442887
关于科研通互助平台的介绍 1418632