Exploring the authentication of COVID-19 vaccines using Surface-enhanced handheld Raman spectroscopy (SERS) equipped with orbital Raster scattering and machine learning

拉曼光谱 计算机科学 鉴定(生物学) 移动设备 认证(法律) 材料科学 人工智能 纳米技术 光学 物理 计算机安全 植物 生物 操作系统
作者
Megan K. Watson,Dhiya Al-Jumeily,Jason W. Birkett,Iftikhar Khan,Sulaf Assi
标识
DOI:10.1109/dese58274.2023.10100028
摘要

COVID-19 is a novel coronavirus first emerging in Wuhan, China in December 2019 and has since spread rapidly across the globe escalating into a worldwide pandemic causing millions of fatalities. Emergency response to the pandemic included social distancing and isolation measures as well as the escalation of vaccination programmes. The most popular COVID-19 vaccines are nucleic acid-based. The vast spread and struggles in containment of the virus has allowed a gap in the market to emerge for counterfeit vaccines. This study investigates the use of handheld Raman spectroscopy as a method for nucleic acid-based vaccine authentication and utilises machine learning analytics to assess the efficacy of the method. Conventional Raman spectroscopy requires a large workspace, is cumbersome and energy consuming, and handheld Raman systems show limitations with regards to sensitivity and sample detection. Surface Enhanced Raman spectroscopy (SERS) however, shows potential as an authentication technique for vaccines, allowing identification of characteristic nucleic acid bands in spectra. SERS showed strong identification potential through Correlation in Wavelength Space (CWS) with all vaccine samples obtaining an r value of approximately 1 when plotted against themselves. Variance was observed between some excipients and a selected number of DNA-based vaccines, possibly attributed to the stability of the SERS colloid where the colloid-vaccine complex had been measured over different time intervals. Further development of the technique would include optimisation of the SERS method, stability studies and more comprehensive analysis and interpretation of a greater sample size.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张点心完成签到,获得积分10
1秒前
1秒前
爆米花应助小蚊子采纳,获得10
2秒前
feiten完成签到,获得积分10
2秒前
面向杂志编论文给ee的求助进行了留言
2秒前
热心市民小杨完成签到,获得积分10
5秒前
5秒前
风中天宇发布了新的文献求助10
6秒前
7秒前
鹿c3完成签到 ,获得积分10
9秒前
10秒前
10秒前
11秒前
李大帅发布了新的文献求助10
11秒前
线条完成签到,获得积分10
12秒前
lalal发布了新的文献求助10
13秒前
小蚊子发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
长歌发布了新的文献求助10
16秒前
TL完成签到,获得积分10
17秒前
fufufu123完成签到 ,获得积分10
18秒前
yelele发布了新的文献求助10
19秒前
19秒前
ZQF完成签到 ,获得积分20
20秒前
22秒前
huihuihui发布了新的文献求助10
22秒前
李大帅完成签到,获得积分10
26秒前
Rarity发布了新的文献求助10
28秒前
打打应助yelele采纳,获得10
28秒前
忧郁小刺猬完成签到,获得积分10
28秒前
雨中行远发布了新的文献求助10
29秒前
感动尔柳完成签到 ,获得积分10
29秒前
研友_VZG7GZ应助honnic采纳,获得10
29秒前
capitalist完成签到,获得积分20
29秒前
30秒前
md完成签到 ,获得积分10
30秒前
长歌完成签到,获得积分10
31秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147998
求助须知:如何正确求助?哪些是违规求助? 2799021
关于积分的说明 7833250
捐赠科研通 2456174
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620