SF2Former: Amyotrophic lateral sclerosis identification from multi-center MRI data using spatial and frequency fusion transformer

计算机科学 人工智能 神经影像学 判别式 深度学习 模式识别(心理学) 机器学习 肌萎缩侧索硬化 医学 神经科学 心理学 病理 疾病
作者
Rafsanjany Kushol,Collin Luk,Avyarthana Dey,Michael Benatar,Hannah Briemberg,Annie Dionne,Nicolas Dupré,Richard Frayne,Angela Genge,Summer Gibson,Simon J. Graham,Lawrence Korngut,Peter Seres,Robert C. Welsh,Alan H. Wilman,Lorne Zinman,Sanjay Kalra,Yee‐Hong Yang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:108: 102279-102279 被引量:7
标识
DOI:10.1016/j.compmedimag.2023.102279
摘要

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by motor neuron degeneration. Significant research has begun to establish brain magnetic resonance imaging (MRI) as a potential biomarker to diagnose and monitor the state of the disease. Deep learning has emerged as a prominent class of machine learning algorithms in computer vision and has shown successful applications in various medical image analysis tasks. However, deep learning methods applied to neuroimaging have not achieved superior performance in classifying ALS patients from healthy controls due to insignificant structural changes correlated with pathological features. Thus, a critical challenge in deep models is to identify discriminative features from limited training data. To address this challenge, this study introduces a framework called SF2Former, which leverages the power of the vision transformer architecture to distinguish ALS subjects from the control group by exploiting the long-range relationships among image features. Additionally, spatial and frequency domain information is combined to enhance the network's performance, as MRI scans are initially captured in the frequency domain and then converted to the spatial domain. The proposed framework is trained using a series of consecutive coronal slices and utilizes pre-trained weights from ImageNet through transfer learning. Finally, a majority voting scheme is employed on the coronal slices of each subject to generate the final classification decision. The proposed architecture is extensively evaluated with multi-modal neuroimaging data (i.e., T1-weighted, R2*, FLAIR) using two well-organized versions of the Canadian ALS Neuroimaging Consortium (CALSNIC) multi-center datasets. The experimental results demonstrate the superiority of the proposed strategy in terms of classification accuracy compared to several popular deep learning-based techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助SunGuangkai采纳,获得10
刚刚
桃子发布了新的文献求助10
1秒前
3秒前
3秒前
smottom应助luo采纳,获得10
4秒前
小马甲应助蔡正雄采纳,获得10
8秒前
8秒前
文静的刺猬完成签到,获得积分10
8秒前
444发布了新的文献求助10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
Miranda发布了新的文献求助30
12秒前
13秒前
羊羊羊完成签到,获得积分10
14秒前
Cheryl完成签到,获得积分10
15秒前
jwb711发布了新的文献求助10
15秒前
希望天下0贩的0应助桃子采纳,获得10
16秒前
小羔羊完成签到,获得积分20
17秒前
大个应助张兴艳采纳,获得10
17秒前
曦耀发布了新的文献求助10
18秒前
SunGuangkai发布了新的文献求助10
19秒前
酷波er应助jwb711采纳,获得10
21秒前
22秒前
桐桐应助酷炫翠柏采纳,获得10
23秒前
NexusExplorer应助无风风采纳,获得10
25秒前
25秒前
XIN完成签到,获得积分10
25秒前
zmgsci发布了新的文献求助20
27秒前
脑洞疼应助ashin17采纳,获得10
28秒前
29秒前
威小廉完成签到,获得积分10
30秒前
小羔羊发布了新的文献求助10
30秒前
852应助杜兰特工队采纳,获得10
31秒前
小马甲应助杜兰特工队采纳,获得10
31秒前
Owen应助杜兰特工队采纳,获得10
31秒前
hw完成签到,获得积分10
32秒前
烟花应助火火采纳,获得10
32秒前
所所应助贝壳采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716