SF2Former: Amyotrophic lateral sclerosis identification from multi-center MRI data using spatial and frequency fusion transformer

计算机科学 人工智能 神经影像学 判别式 深度学习 模式识别(心理学) 机器学习 肌萎缩侧索硬化 医学 神经科学 心理学 病理 疾病
作者
Rafsanjany Kushol,Collin Luk,Avyarthana Dey,Michael Benatar,Hannah Briemberg,Annie Dionne,Nicolas Dupré,Richard Frayne,Angela Genge,Summer Gibson,Simon J. Graham,Lawrence Korngut,Peter Seres,Robert C. Welsh,Alan H. Wilman,Lorne Zinman,Sanjay Kalra,Yee‐Hong Yang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:108: 102279-102279 被引量:7
标识
DOI:10.1016/j.compmedimag.2023.102279
摘要

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by motor neuron degeneration. Significant research has begun to establish brain magnetic resonance imaging (MRI) as a potential biomarker to diagnose and monitor the state of the disease. Deep learning has emerged as a prominent class of machine learning algorithms in computer vision and has shown successful applications in various medical image analysis tasks. However, deep learning methods applied to neuroimaging have not achieved superior performance in classifying ALS patients from healthy controls due to insignificant structural changes correlated with pathological features. Thus, a critical challenge in deep models is to identify discriminative features from limited training data. To address this challenge, this study introduces a framework called SF2Former, which leverages the power of the vision transformer architecture to distinguish ALS subjects from the control group by exploiting the long-range relationships among image features. Additionally, spatial and frequency domain information is combined to enhance the network's performance, as MRI scans are initially captured in the frequency domain and then converted to the spatial domain. The proposed framework is trained using a series of consecutive coronal slices and utilizes pre-trained weights from ImageNet through transfer learning. Finally, a majority voting scheme is employed on the coronal slices of each subject to generate the final classification decision. The proposed architecture is extensively evaluated with multi-modal neuroimaging data (i.e., T1-weighted, R2*, FLAIR) using two well-organized versions of the Canadian ALS Neuroimaging Consortium (CALSNIC) multi-center datasets. The experimental results demonstrate the superiority of the proposed strategy in terms of classification accuracy compared to several popular deep learning-based techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助钙钛矿光伏采纳,获得10
刚刚
科研民工完成签到,获得积分10
1秒前
Tzihin完成签到,获得积分10
4秒前
5秒前
7秒前
7秒前
美有姬完成签到,获得积分10
8秒前
dcx完成签到,获得积分10
8秒前
8秒前
高贵花瓣完成签到,获得积分10
10秒前
RUINNNO发布了新的文献求助10
10秒前
shl发布了新的文献求助10
10秒前
11秒前
little_forest应助发嗲的雨筠采纳,获得30
12秒前
赵立双完成签到,获得积分20
12秒前
科研肥料完成签到,获得积分10
13秒前
顺心蜜粉完成签到,获得积分10
13秒前
13秒前
peng_aihua发布了新的文献求助10
14秒前
星辰大海应助火星上曼冬采纳,获得10
15秒前
扑通扑通通完成签到 ,获得积分10
16秒前
16秒前
Hshi应助Z777采纳,获得10
16秒前
最好的发布了新的文献求助10
17秒前
shl完成签到,获得积分10
18秒前
Lucas应助流白采纳,获得10
19秒前
王青青完成签到,获得积分10
22秒前
Wu完成签到,获得积分10
23秒前
mirror发布了新的文献求助10
24秒前
peng_aihua完成签到,获得积分10
25秒前
26秒前
搜集达人应助yesir采纳,获得10
26秒前
红橙黄绿蓝靛紫111给红橙黄绿蓝靛紫111的求助进行了留言
26秒前
26秒前
26秒前
susu完成签到 ,获得积分10
26秒前
蓝冰发布了新的文献求助10
30秒前
冷酷凌丝发布了新的文献求助10
30秒前
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240077
求助须知:如何正确求助?哪些是违规求助? 2885101
关于积分的说明 8236849
捐赠科研通 2553396
什么是DOI,文献DOI怎么找? 1381586
科研通“疑难数据库(出版商)”最低求助积分说明 649292
邀请新用户注册赠送积分活动 624979