SF2Former: Amyotrophic lateral sclerosis identification from multi-center MRI data using spatial and frequency fusion transformer

计算机科学 人工智能 神经影像学 判别式 深度学习 模式识别(心理学) 机器学习 肌萎缩侧索硬化 医学 神经科学 心理学 病理 疾病
作者
Rafsanjany Kushol,Collin Luk,Avyarthana Dey,Michael Benatar,Hannah Briemberg,Annie Dionne,Nicolas Dupré,Richard Frayne,Angela Genge,Summer Gibson,Simon J. Graham,Lawrence Korngut,Peter Seres,Robert C. Welsh,Alan H. Wilman,Lorne Zinman,Sanjay Kalra,Yee‐Hong Yang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:108: 102279-102279 被引量:7
标识
DOI:10.1016/j.compmedimag.2023.102279
摘要

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by motor neuron degeneration. Significant research has begun to establish brain magnetic resonance imaging (MRI) as a potential biomarker to diagnose and monitor the state of the disease. Deep learning has emerged as a prominent class of machine learning algorithms in computer vision and has shown successful applications in various medical image analysis tasks. However, deep learning methods applied to neuroimaging have not achieved superior performance in classifying ALS patients from healthy controls due to insignificant structural changes correlated with pathological features. Thus, a critical challenge in deep models is to identify discriminative features from limited training data. To address this challenge, this study introduces a framework called SF2Former, which leverages the power of the vision transformer architecture to distinguish ALS subjects from the control group by exploiting the long-range relationships among image features. Additionally, spatial and frequency domain information is combined to enhance the network's performance, as MRI scans are initially captured in the frequency domain and then converted to the spatial domain. The proposed framework is trained using a series of consecutive coronal slices and utilizes pre-trained weights from ImageNet through transfer learning. Finally, a majority voting scheme is employed on the coronal slices of each subject to generate the final classification decision. The proposed architecture is extensively evaluated with multi-modal neuroimaging data (i.e., T1-weighted, R2*, FLAIR) using two well-organized versions of the Canadian ALS Neuroimaging Consortium (CALSNIC) multi-center datasets. The experimental results demonstrate the superiority of the proposed strategy in terms of classification accuracy compared to several popular deep learning-based techniques.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
syqlyd完成签到 ,获得积分10
刚刚
刚刚
刚刚
永远永远发布了新的文献求助10
1秒前
1秒前
LYQ15237208950完成签到 ,获得积分10
1秒前
木子囡月完成签到,获得积分10
1秒前
1秒前
局内人发布了新的文献求助10
1秒前
2秒前
善学以致用应助阳光彩虹采纳,获得10
2秒前
wanci应助kkem采纳,获得10
2秒前
杨晓柳完成签到,获得积分10
2秒前
3秒前
3秒前
马良完成签到,获得积分10
3秒前
整箱完成签到 ,获得积分10
3秒前
3秒前
任性子骞应助读书的时候采纳,获得10
4秒前
zhonglv7应助读书的时候采纳,获得10
4秒前
zhonglv7应助读书的时候采纳,获得10
4秒前
zhonglv7应助读书的时候采纳,获得10
4秒前
HOAN应助读书的时候采纳,获得30
4秒前
zhonglv7应助读书的时候采纳,获得10
4秒前
Zdh同学完成签到,获得积分10
4秒前
豌豆射手完成签到,获得积分20
4秒前
KK发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
曾经采蓝完成签到,获得积分10
6秒前
叶子发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
情怀应助丹三采纳,获得10
7秒前
乐乐应助三哼采纳,获得10
7秒前
7秒前
王木木发布了新的文献求助10
7秒前
吉吉完成签到,获得积分20
8秒前
biudungdung完成签到,获得积分10
8秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750468
求助须知:如何正确求助?哪些是违规求助? 5464085
关于积分的说明 15366838
捐赠科研通 4889446
什么是DOI,文献DOI怎么找? 2629235
邀请新用户注册赠送积分活动 1577526
关于科研通互助平台的介绍 1534012