Prediction of Retear After Arthroscopic Rotator Cuff Repair Based on Intraoperative Arthroscopic Images Using Deep Learning

医学 肩袖 磁共振成像 接收机工作特性 放射科 人工智能 核医学 外科 计算机科学 内科学
作者
Sung-Hyun Cho,Yang‐Soo Kim
出处
期刊:American Journal of Sports Medicine [SAGE]
卷期号:51 (11): 2824-2830 被引量:3
标识
DOI:10.1177/03635465231189201
摘要

Background: It is challenging to predict retear after arthroscopic rotator cuff repair (ARCR). The usefulness of arthroscopic intraoperative images as predictors of the ARCR prognosis has not been analyzed. Purpose: To evaluate the usefulness of arthroscopic images for the prediction of retear after ARCR using deep learning (DL) algorithms. Study Design: Cohort study (Diagnosis); Level of evidence, 2. Methods: In total, 1394 arthroscopic intraoperative images were retrospectively obtained from 580 patients. Repaired tendon integrity was evaluated using magnetic resonance imaging performed within 2 years after surgery. Images obtained immediately after ARCR were included. We used 3 DL architectures to predict retear based on arthroscopic images. Three pretrained DL algorithms (VGG16, DenseNet, and Xception) were used for transfer learning. Training and test sets were split into 8:2. Threefold stratified validation was used to fine-tune the hyperparameters using the training data set. The validation results of each fold were evaluated. The performance of each model in the test set was evaluated in terms of accuracy, area under the receiver operating characteristic curve (AUC), F1-score, sensitivity, and specificity. Results: In total, 1138 and 256 arthroscopic images were obtained from 514 patients and 66 patients in the nonretear and retear groups, respectively. The mean validation accuracy of each model was 83% for VGG16, 89% for Xception, and 91% for DenseNet. The accuracy for the test set was 76% for VGG16, 87% for Xception, and 91% for DenseNet. The AUC was highest for DenseNet (0.92); it was 0.83 for VGG16 and 0.91 for Xception. For the test set, the specificity and sensitivity were 0.93 and 0.84 for DenseNet, 0.89 and 0.84 for Xception, and 0.70 and 0.80 for VGG16, respectively. Conclusion: The application of DL algorithms to intraoperative arthroscopic images has demonstrated a high level of accuracy in predicting retear occurrences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mimianuo完成签到 ,获得积分10
1秒前
2秒前
3秒前
echo发布了新的文献求助10
3秒前
3秒前
科研谢啦发布了新的文献求助10
4秒前
皮崇知发布了新的文献求助10
4秒前
kwq发布了新的文献求助10
7秒前
8秒前
彭于晏应助季末默相依采纳,获得10
9秒前
momo完成签到,获得积分10
11秒前
忧郁老头发布了新的文献求助10
11秒前
11秒前
仁爱太阳完成签到,获得积分10
12秒前
啊莲完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
14秒前
仁爱太阳发布了新的文献求助10
14秒前
buran发布了新的文献求助10
14秒前
雷小仙儿完成签到,获得积分10
15秒前
大气瑾瑜发布了新的文献求助10
16秒前
16秒前
ZZH发布了新的文献求助10
17秒前
无异常完成签到,获得积分10
18秒前
虚幻不弱发布了新的文献求助10
18秒前
18秒前
18秒前
情怀应助混子采纳,获得10
19秒前
封尘逸动发布了新的文献求助10
20秒前
研友_VZG7GZ应助mengtian采纳,获得10
20秒前
岁晚发布了新的文献求助10
21秒前
21秒前
大家好完成签到 ,获得积分10
22秒前
王粒完成签到,获得积分10
22秒前
牧友桃发布了新的文献求助10
22秒前
李爱国应助勤奋的猪采纳,获得10
23秒前
wanghaiyang发布了新的文献求助10
23秒前
科研通AI5应助吃了吃了采纳,获得10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554712
求助须知:如何正确求助?哪些是违规求助? 3130546
关于积分的说明 9387446
捐赠科研通 2829867
什么是DOI,文献DOI怎么找? 1555725
邀请新用户注册赠送积分活动 726278
科研通“疑难数据库(出版商)”最低求助积分说明 715542