Development of a machine learning-based model for predicting risk of early postoperative recurrence of hepatocellular carcinoma

医学 肝细胞癌 肝切除术 肝硬化 接收机工作特性 机器学习 人工智能 内科学 外科 计算机科学 切除术
作者
Yubo Zhang,Gang Yang,Bu Yang,Peng Lei,Wei Zhang,Danyang Zhang
出处
期刊:World Journal of Gastroenterology [Baishideng Publishing Group Co]
卷期号:29 (43): 5804-5817 被引量:6
标识
DOI:10.3748/wjg.v29.i43.5804
摘要

Surgical resection is the primary treatment for hepatocellular carcinoma (HCC). However, studies indicate that nearly 70% of patients experience HCC recurrence within five years following hepatectomy. The earlier the recurrence, the worse the prognosis. Current studies on postoperative recurrence primarily rely on postoperative pathology and patient clinical data, which are lagging. Hence, developing a new pre-operative prediction model for postoperative recurrence is crucial for guiding individualized treatment of HCC patients and enhancing their prognosis.To identify key variables in pre-operative clinical and imaging data using machine learning algorithms to construct multiple risk prediction models for early postoperative recurrence of HCC.The demographic and clinical data of 371 HCC patients were collected for this retrospective study. These data were randomly divided into training and test sets at a ratio of 8:2. The training set was analyzed, and key feature variables with predictive value for early HCC recurrence were selected to construct six different machine learning prediction models. Each model was evaluated, and the best-performing model was selected for interpreting the importance of each variable. Finally, an online calculator based on the model was generated for daily clinical practice.Following machine learning analysis, eight key feature variables (age, intratumoral arteries, alpha-fetoprotein, pre-operative blood glucose, number of tumors, glucose-to-lymphocyte ratio, liver cirrhosis, and pre-operative platelets) were selected to construct six different prediction models. The XGBoost model outperformed other models, with the area under the receiver operating characteristic curve in the training, validation, and test datasets being 0.993 (95% confidence interval: 0.982-1.000), 0.734 (0.601-0.867), and 0.706 (0.585-0.827), respectively. Calibration curve and decision curve analysis indicated that the XGBoost model also had good predictive performance and clinical application value.The XGBoost model exhibits superior performance and is a reliable tool for predicting early postoperative HCC recurrence. This model may guide surgical strategies and postoperative individualized medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮镜子关注了科研通微信公众号
刚刚
An.发布了新的文献求助10
1秒前
长干完成签到,获得积分10
2秒前
彭于彦祖应助chenzi采纳,获得30
2秒前
莫名完成签到,获得积分10
3秒前
seebeg发布了新的文献求助10
3秒前
在水一方应助张张采纳,获得10
3秒前
科研通AI2S应助567采纳,获得10
3秒前
4秒前
4秒前
4秒前
叨叨不叨叨叨叨叨完成签到,获得积分10
4秒前
5秒前
5秒前
7秒前
很靠近海发布了新的文献求助10
7秒前
所所应助Zlinco采纳,获得10
8秒前
大大大大大大大象关注了科研通微信公众号
8秒前
郑嘻嘻完成签到,获得积分10
10秒前
艾斯完成签到 ,获得积分10
12秒前
布丁发布了新的文献求助10
12秒前
FashionBoy应助九司采纳,获得10
12秒前
wan1223发布了新的文献求助10
12秒前
FashionBoy应助CC采纳,获得10
12秒前
张张发布了新的文献求助10
13秒前
1717完成签到 ,获得积分10
14秒前
14秒前
寻觅发布了新的文献求助10
17秒前
文艺从彤完成签到,获得积分10
18秒前
m13702186115发布了新的文献求助10
18秒前
xibei发布了新的文献求助20
20秒前
21秒前
22秒前
钟小熊完成签到,获得积分10
22秒前
PPP完成签到,获得积分10
22秒前
23秒前
小马甲应助fxxxxx采纳,获得10
23秒前
cocolu应助pengjunjiang采纳,获得10
23秒前
24秒前
hivivian完成签到,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306775
求助须知:如何正确求助?哪些是违规求助? 2940581
关于积分的说明 8497765
捐赠科研通 2614785
什么是DOI,文献DOI怎么找? 1428522
科研通“疑难数据库(出版商)”最低求助积分说明 663442
邀请新用户注册赠送积分活动 648263