Generalized Adaptive Disturbance Observer Based Global Terminal Sliding Mode Control for PMSM With Measurement Noise

控制理论(社会学) 稳健性(进化) 终端滑动模式 解耦(概率) 计算机科学 国家观察员 噪音(视频) 滑模控制 控制工程 工程类 非线性系统 控制(管理) 物理 生物化学 化学 量子力学 人工智能 图像(数学) 基因
作者
Bing Wang,Y. C. Li
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 103753-103764
标识
DOI:10.1109/access.2023.3316604
摘要

Improving the robustness and dynamic response of permanent magnet synchronous motor (PMSM) drive systems under the influence of measurement noise is a hot topic. Aiming at this issue, a generalized adaptive disturbance observer (GADO) based global terminal sliding mode speed control (GTSMC) scheme is proposed for PMSM. Firstly, a novel terminal sliding surface ensuring that the initial system operates in sliding mode is introduced, and the GTSMC controller is thus derived. Further, a current decoupling controller based on the linear extended state observer (LESO) is designed to realize the accurate dynamic decoupling. Regarding the undesirable chattering of GTSMC, a disturbance attenuation scheme based on generalized adaptive disturbance observer (GADO) is proposed. The uncertain disturbances are estimated by the GADO, and equivalent compensation is introduced. Different from the conventional fixed-gain disturbance observer, the influence of measurement noise is considered and the generalized adaptive gain mechanism is introduced to the GADO. The gain of the GADO can be adaptively adjusted according to the operating state, in which the excellent dynamic response and low sensitivity to measurement noise are guaranteed. Finally, the proposed control scheme for PMSM are tested through simulation, and the results verify its excellent performances in terms of speed tracking, robustness against uncertainties, and sensitivity to measurement noise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
成都完成签到,获得积分20
刚刚
1秒前
wjh发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
整齐的白筠完成签到,获得积分10
2秒前
WWWUBING完成签到,获得积分10
3秒前
小文发布了新的文献求助10
3秒前
MJQ发布了新的文献求助10
3秒前
3秒前
春夏秋冬发布了新的文献求助10
4秒前
4秒前
4秒前
李健的小迷弟应助nn采纳,获得10
4秒前
彭于晏应助sunzhiyu233采纳,获得10
5秒前
5秒前
zzznznnn完成签到,获得积分10
5秒前
5秒前
马保国123发布了新的文献求助10
5秒前
5秒前
慕青应助wsljc134采纳,获得10
5秒前
6秒前
世界尽头完成签到,获得积分10
7秒前
7秒前
君与完成签到,获得积分10
7秒前
yili发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI5应助专注乐巧采纳,获得10
8秒前
自信晟睿发布了新的文献求助10
8秒前
8秒前
9秒前
七里香完成签到 ,获得积分10
9秒前
handsomecat关注了科研通微信公众号
9秒前
细心映寒完成签到 ,获得积分10
9秒前
9秒前
fff完成签到,获得积分10
9秒前
领导范儿应助MJQ采纳,获得100
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759