Machine Learning–Based Magnetic Resonance Radiomics Analysis for Predicting Low- and High-Grade Clear Cell Renal Cell Carcinoma

医学 无线电技术 磁共振成像 随机森林 肾透明细胞癌 接收机工作特性 肾细胞癌 有效扩散系数 磁共振弥散成像 放射科 核医学 人工智能 病理 内科学 计算机科学
作者
Ki Choon Sim,Na Han,Yongwon Cho,Deuk Jae Sung,Beom Jin Park,Min Ju Kim,Yeo Eun Han
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (6): 873-881 被引量:3
标识
DOI:10.1097/rct.0000000000001453
摘要

To explore whether high- and low-grade clear cell renal cell carcinomas (ccRCC) can be distinguished using radiomics features extracted from magnetic resonance imaging.In this retrospective study, 154 patients with pathologically proven clear ccRCC underwent contrast-enhanced 3 T magnetic resonance imaging and were assigned to the development (n = 122) and test (n = 32) cohorts in a temporal-split setup. A total of 834 radiomics features were extracted from whole-tumor volumes using 3 sequences: T2-weighted imaging (T2WI), diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging. A random forest regressor was used to extract important radiomics features that were subsequently used for model development using the random forest algorithm. Tumor size, apparent diffusion coefficient value, and percentage of tumor-to-renal parenchymal signal intensity drop in the tumors were recorded by 2 radiologists for quantitative analysis. The area under the receiver operating characteristic curve (AUC) was generated to predict ccRCC grade.In the development cohort, the T2WI-based radiomics model demonstrated the highest performance (AUC, 0.82). The T2WI-based radiomics and radiologic feature hybrid model showed AUCs of 0.79 and 0.83, respectively. In the test cohort, the T2WI-based radiomics model achieved an AUC of 0.82. The range of AUCs of the hybrid model of T2WI-based radiomics and radiologic features was 0.73 to 0.80.Magnetic resonance imaging-based classifier models using radiomics features and machine learning showed satisfactory diagnostic performance in distinguishing between high- and low-grade ccRCC, thereby serving as a helpful noninvasive tool for predicting ccRCC grade.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LEE佳完成签到 ,获得积分10
1秒前
华东小可爱完成签到,获得积分10
1秒前
nana发布了新的文献求助10
2秒前
3秒前
子车茗给小t的求助进行了留言
5秒前
酷波er应助鞘皮采纳,获得10
6秒前
科研兵发布了新的文献求助10
7秒前
小二郎应助莫知采纳,获得10
8秒前
方若剑完成签到,获得积分10
8秒前
10秒前
10秒前
亚丽完成签到 ,获得积分10
10秒前
11秒前
11秒前
科研通AI2S应助Jane采纳,获得10
13秒前
ding应助辛勤的小熊猫采纳,获得200
13秒前
Siren完成签到,获得积分10
14秒前
14秒前
14秒前
TCAP完成签到,获得积分10
15秒前
fxkzjz发布了新的文献求助10
15秒前
啵啵啵波发布了新的文献求助10
16秒前
17秒前
敬老院N号应助hswhswqkdh采纳,获得50
17秒前
瑶啊瑶发布了新的文献求助10
17秒前
仙人掌发布了新的文献求助10
17秒前
18秒前
雪白梦容完成签到,获得积分20
18秒前
狼洪明完成签到,获得积分10
19秒前
科研通AI2S应助科研兵采纳,获得10
20秒前
沐风完成签到,获得积分10
21秒前
无生发布了新的文献求助10
21秒前
万能图书馆应助啵啵啵波采纳,获得10
22秒前
莫知发布了新的文献求助10
22秒前
风止完成签到 ,获得积分10
23秒前
雪白梦容发布了新的文献求助20
23秒前
23秒前
Joan发布了新的文献求助10
28秒前
鞘皮发布了新的文献求助10
29秒前
缥缈宛凝发布了新的文献求助10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240609
求助须知:如何正确求助?哪些是违规求助? 2885398
关于积分的说明 8238210
捐赠科研通 2553757
什么是DOI,文献DOI怎么找? 1381860
科研通“疑难数据库(出版商)”最低求助积分说明 649371
邀请新用户注册赠送积分活动 625009