Emotion Recognition From Few-Channel EEG Signals by Integrating Deep Feature Aggregation and Transfer Learning

脑电图 计算机科学 学习迁移 频道(广播) 人工智能 模式识别(心理学) 情绪分类 语音识别 特征提取 特征(语言学) 心理学 神经科学 电信 语言学 哲学
作者
Fang Liu,Pei Yang,Yezhi Shu,Niqi Liu,Jenny Sheng,Junwen Luo,Xiaoan Wang,Yong‐Jin Liu
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1315-1330 被引量:8
标识
DOI:10.1109/taffc.2023.3336531
摘要

Electroencephalogram (EEG) signals have been widely studied in human emotion recognition. The majority of existing EEG emotion recognition algorithms utilize dozens or hundreds of electrodes covering the whole scalp region (denoted as full-channel EEG devices in this paper). Nowadays, more and more portable and miniature EEG devices with only a few electrodes (denoted as few-channel EEG devices in this paper) are emerging. However, emotion recognition from few-channel EEG data is challenging because the device can only capture EEG signals from a portion of the brain area. Moreover, existing full-channel algorithms cannot be directly adapted to few-channel EEG signals due to the significant inter-variation between full-channel and few-channel EEG devices. To address these challenges, we propose a novel few-channel EEG emotion recognition framework from the perspective of knowledge transfer. We leverage full-channel EEG signals to provide supplementary information for few-channel signals via a transfer learning-based model CD-EmotionNet, which consists of a base emotion model for efficient emotional feature extraction and a cross-device transfer learning strategy. This strategy helps to enhance emotion recognition performance on few-channel EEG data by utilizing knowledge learned from full-channel EEG data. To evaluate our cross-device EEG emotion transfer learning framework, we construct an emotion dataset containing paired 18-channel and 5-channel EEG signals from 25 subjects, as well as 5-channel EEG signals from 13 other subjects. Extensive experiments show that our framework outperforms state-of-the-art EEG emotion recognition methods by a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助晾猫人采纳,获得10
刚刚
科目三应助晾猫人采纳,获得10
刚刚
刚刚
睿诺应助晾猫人采纳,获得10
刚刚
刚刚
zbq来完成签到,获得积分10
刚刚
1秒前
梦槐完成签到,获得积分10
2秒前
刘JJ完成签到,获得积分10
2秒前
RR发布了新的文献求助10
2秒前
CipherSage应助逃亡的小狗采纳,获得10
2秒前
隐形曼青应助沉默思山采纳,获得10
3秒前
无花果应助JinkFun采纳,获得10
3秒前
甜甜行云关注了科研通微信公众号
3秒前
落英芬芳关注了科研通微信公众号
3秒前
fy207完成签到,获得积分10
4秒前
4秒前
4秒前
太叔夜南发布了新的文献求助10
5秒前
5秒前
dqq完成签到,获得积分10
5秒前
6秒前
Fay完成签到,获得积分10
6秒前
ylf完成签到,获得积分10
7秒前
7秒前
fufu完成签到,获得积分10
7秒前
7秒前
fy207发布了新的文献求助10
7秒前
jinjinj发布了新的文献求助10
8秒前
12334发布了新的文献求助10
8秒前
深情安青应助ZYTX采纳,获得10
8秒前
黎洛洛完成签到,获得积分10
8秒前
坚果完成签到,获得积分10
9秒前
Lucas应助huangqqk采纳,获得10
9秒前
10秒前
能干的向真应助王菲采纳,获得10
10秒前
10秒前
清风拂山岗完成签到,获得积分10
10秒前
林佳一完成签到,获得积分10
10秒前
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961465
求助须知:如何正确求助?哪些是违规求助? 3507798
关于积分的说明 11138163
捐赠科研通 3240268
什么是DOI,文献DOI怎么找? 1790870
邀请新用户注册赠送积分活动 872609
科研通“疑难数据库(出版商)”最低求助积分说明 803288