作者
Tiange Liu,Jia Gu,Caili Fu,Lingshan Su
摘要
The intestine is a visceral organ that integrates absorption, metabolism, and immunity, which is vulnerable to external stimulus. Researchers in the fields such as food science, immunology, and pharmacology have committed to developing appropriate in vitro intestinal cell models to study the intestinal absorption and metabolism mechanisms of various nutrients and drugs, or pathogenesis of intestinal diseases. In the past three decades, the intestinal cell models have undergone a significant transformation from conventional two-dimensional cultures to three-dimensional (3D) systems, and the achievements of 3D cell culture have been greatly contributed by the fabrication of different scaffolds. In this review, we first introduce the developing trend of existing intestinal models. Then, four types of scaffolds, including Transwell, hydrogel, tubular scaffolds, and intestine-on-a-chip, are discussed for their 3D structure, composition, advantages, and limitations in the establishment of intestinal cell models. Excitingly, some of the in vitro intestinal cell models based on these scaffolds could successfully mimic the 3D structure, microenvironment, mechanical peristalsis, fluid system, signaling gradients, or other important aspects of the original human intestine. Furthermore, we discuss the potential applications of the intestinal cell models in drug screening, disease modeling, and even regenerative repair of intestinal tissues. This review presents an overview of state-of-the-art scaffold-based cell models within the context of intestines, and highlights their major advances and applications contributing to a better knowledge of intestinal diseases.