知识图
计算机科学
水准点(测量)
图形
关系(数据库)
人工智能
理论计算机科学
面子(社会学概念)
自然语言处理
机器学习
数据挖掘
社会科学
大地测量学
社会学
地理
作者
Yao Liang,Jun Peng,Chengsheng Mao,Yuan Luo
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:1
标识
DOI:10.48550/arxiv.2308.13916
摘要
Knowledge graphs play a vital role in numerous artificial intelligence tasks, yet they frequently face the issue of incompleteness. In this study, we explore utilizing Large Language Models (LLM) for knowledge graph completion. We consider triples in knowledge graphs as text sequences and introduce an innovative framework called Knowledge Graph LLM (KG-LLM) to model these triples. Our technique employs entity and relation descriptions of a triple as prompts and utilizes the response for predictions. Experiments on various benchmark knowledge graphs demonstrate that our method attains state-of-the-art performance in tasks such as triple classification and relation prediction. We also find that fine-tuning relatively smaller models (e.g., LLaMA-7B, ChatGLM-6B) outperforms recent ChatGPT and GPT-4.
科研通智能强力驱动
Strongly Powered by AbleSci AI