雷达
人工智能
计算机科学
点云
云计算
分类器(UML)
支持向量机
感知器
模式识别(心理学)
计算机视觉
人工神经网络
电信
操作系统
作者
Guangcheng Zhang,Shenchen Li,Kai Zhang,Yueh‐Jaw Lin
出处
期刊:Sensors
[MDPI AG]
日期:2023-08-16
卷期号:23 (16): 7208-7208
被引量:2
摘要
Human posture recognition technology is widely used in the fields of healthcare, human-computer interaction, and sports. The use of a Frequency-Modulated Continuous Wave (FMCW) millimetre-wave (MMW) radar sensor in measuring human posture characteristics data is of great significance because of its robust and strong recognition capabilities. This paper demonstrates how human posture characteristics data are measured, classified, and identified using FMCW techniques. First of all, the characteristics data of human posture is measured with the MMW radar sensors. Secondly, the point cloud data for human posture is generated, considering both the dynamic and static features of the reflected signal from the human body, which not only greatly reduces the environmental noise but also strengthens the reflection of the detected target. Lastly, six different machine learning models are applied for posture classification based on the generated point cloud data. To comparatively evaluate the proper model for point cloud data classification procedure-in addition to using the traditional index-the Kappa index was introduced to eliminate the effect due to the uncontrollable imbalance of the sampling data. These results support our conclusion that among the six machine learning algorithms implemented in this paper, the multi-layer perceptron (MLP) method is regarded as the most promising classifier.
科研通智能强力驱动
Strongly Powered by AbleSci AI