Machine Learning-Based Human Posture Identification from Point Cloud Data Acquisitioned by FMCW Millimetre-Wave Radar

雷达 人工智能 计算机科学 点云 云计算 分类器(UML) 支持向量机 感知器 模式识别(心理学) 计算机视觉 人工神经网络 电信 操作系统
作者
Guangcheng Zhang,Shenchen Li,Kai Zhang,Yueh‐Jaw Lin
出处
期刊:Sensors [MDPI AG]
卷期号:23 (16): 7208-7208 被引量:2
标识
DOI:10.3390/s23167208
摘要

Human posture recognition technology is widely used in the fields of healthcare, human-computer interaction, and sports. The use of a Frequency-Modulated Continuous Wave (FMCW) millimetre-wave (MMW) radar sensor in measuring human posture characteristics data is of great significance because of its robust and strong recognition capabilities. This paper demonstrates how human posture characteristics data are measured, classified, and identified using FMCW techniques. First of all, the characteristics data of human posture is measured with the MMW radar sensors. Secondly, the point cloud data for human posture is generated, considering both the dynamic and static features of the reflected signal from the human body, which not only greatly reduces the environmental noise but also strengthens the reflection of the detected target. Lastly, six different machine learning models are applied for posture classification based on the generated point cloud data. To comparatively evaluate the proper model for point cloud data classification procedure-in addition to using the traditional index-the Kappa index was introduced to eliminate the effect due to the uncontrollable imbalance of the sampling data. These results support our conclusion that among the six machine learning algorithms implemented in this paper, the multi-layer perceptron (MLP) method is regarded as the most promising classifier.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
刚刚
1秒前
哦豁应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
1秒前
慕青应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
哦豁应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
浮游漂漂应助科研通管家采纳,获得10
2秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5767182
求助须知:如何正确求助?哪些是违规求助? 5568519
关于积分的说明 15414583
捐赠科研通 4901198
什么是DOI,文献DOI怎么找? 2636869
邀请新用户注册赠送积分活动 1585074
关于科研通互助平台的介绍 1540240