自愈水凝胶
材料科学
韧性
粘附
生物相容性
胶粘剂
复合材料
组织工程
化学工程
高分子化学
生物医学工程
图层(电子)
医学
冶金
工程类
作者
Heng An,Meng Zhang,Zhe Huang,Yongxiang Xu,Ji Shen,Zhen Gu,Peixun Zhang,Yongqiang Wen
标识
DOI:10.1002/adma.202310164
摘要
Abstract Hydrogel adhesion materials are widely reported for tissue engineering repair applications, however, wet tissue surface moisture can reduce the wet‐adhesion properties and mechanical strength of hydrogels limiting their application. Here, anti‐hydration gelatin–acrylic acid–ethylene dimethacrylate (GAE) hydrogels with hydrophobic cross‐linked chains are constructed. The prepared GAE hydrogel is soaked in PBS (3 days) with a volume change of 0.6 times of the original and the adhesive strength, Young's modulus, toughness, and burst pressure are maintained by ≈70% of the original. A simple and universal method is used to introduce hydrophobic chains as cross‐linking points to prepare hydrogels with anti‐hydration, toughness, and high wet state adhesion. The hydrophobic cross‐linked chains not only restrict the movement of molecular chains but also hinder the intrusion of water molecules. Antihydration GAE hydrogels exhibit good biocompatibility, slow drug release, and dynamic oral wet‐state tissue repair properties. Therefore, the anti‐hydration hydrogel has excellent toughness, wet tissue adhesion properties, and good prospects for biological applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI