Calibrated geometric deep learning improves kinase–drug binding predictions

基诺美 可药性 化学空间 人工智能 结合亲和力 计算机科学 计算生物学 药物发现 机器学习 深度学习 亲缘关系 激酶 生物 生物信息学 生物化学 基因 受体
作者
Yunan Luo,Yang Liu,Jian Peng
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:5 (12): 1390-1401 被引量:29
标识
DOI:10.1038/s42256-023-00751-0
摘要

Protein kinases regulate various cellular functions and hold significant pharmacological promise in cancer and other diseases. Although kinase inhibitors are one of the largest groups of approved drugs, much of the human kinome remains unexplored but potentially druggable. Computational approaches, such as machine learning, offer efficient solutions for exploring kinase–compound interactions and uncovering novel binding activities. Despite the increasing availability of three-dimensional (3D) protein and compound structures, existing methods predominantly focus on exploiting local features from one-dimensional protein sequences and two-dimensional molecular graphs to predict binding affinities, overlooking the 3D nature of the binding process. Here we present KDBNet, a deep learning algorithm that incorporates 3D protein and molecule structure data to predict binding affinities. KDBNet uses graph neural networks to learn structure representations of protein binding pockets and drug molecules, capturing the geometric and spatial characteristics of binding activity. In addition, we introduce an algorithm to quantify and calibrate the uncertainties of KDBNet's predictions, enhancing its utility in model-guided discovery in chemical or protein space. Experiments demonstrated that KDBNet outperforms existing deep learning models in predicting kinase–drug binding affinities. The uncertainties estimated by KDBNet are informative and well-calibrated with respect to prediction errors. When integrated with a Bayesian optimization framework, KDBNet enables data-efficient active learning and accelerates the exploration and exploitation of diverse high-binding kinase–drug pairs. Geometric deep learning has become a powerful tool in virtual drug design, but it is not always obvious when a model makes incorrect predictions. Luo and colleagues improve the accuracy of their deep learning model using uncertainty calibration and Bayesian optimization in an active learning cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LLY发布了新的文献求助10
1秒前
1秒前
典雅聪展完成签到,获得积分10
1秒前
linggaga完成签到,获得积分10
1秒前
典雅的俊驰应助琪哒采纳,获得10
2秒前
隐形曼青应助wlqc采纳,获得10
2秒前
快乐旭尧发布了新的文献求助10
2秒前
落寞鱼完成签到,获得积分10
2秒前
bbb发布了新的文献求助10
3秒前
糖异生给糖异生的求助进行了留言
3秒前
鸣笛应助听风遇见采纳,获得20
3秒前
3秒前
3秒前
123发布了新的文献求助10
4秒前
科研通AI5应助Dd采纳,获得10
4秒前
5秒前
动听的店员完成签到,获得积分20
5秒前
加油少年完成签到,获得积分10
5秒前
5秒前
科研通AI5应助不吃香菜采纳,获得10
5秒前
wuhuhu发布了新的文献求助10
5秒前
6秒前
小蘑菇应助舒适一手采纳,获得10
6秒前
vooov发布了新的文献求助10
6秒前
6秒前
haveatry发布了新的文献求助30
6秒前
丘比特应助无言已对采纳,获得10
7秒前
达达罗发布了新的文献求助10
7秒前
7秒前
小周周完成签到 ,获得积分10
8秒前
我蛋挞呢应助戽斗采纳,获得50
8秒前
万能图书馆应助jinyu采纳,获得10
9秒前
Geass发布了新的文献求助10
10秒前
10秒前
潇洒皮带完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
万信心发布了新的文献求助10
10秒前
10秒前
戚薇发布了新的文献求助10
10秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709