Calibrated geometric deep learning improves kinase–drug binding predictions

基诺美 可药性 化学空间 人工智能 结合亲和力 计算机科学 计算生物学 药物发现 机器学习 深度学习 亲缘关系 激酶 生物 生物信息学 生物化学 基因 受体
作者
Yunan Luo,Yang Liu,Jian Peng
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (12): 1390-1401 被引量:13
标识
DOI:10.1038/s42256-023-00751-0
摘要

Protein kinases regulate various cellular functions and hold significant pharmacological promise in cancer and other diseases. Although kinase inhibitors are one of the largest groups of approved drugs, much of the human kinome remains unexplored but potentially druggable. Computational approaches, such as machine learning, offer efficient solutions for exploring kinase–compound interactions and uncovering novel binding activities. Despite the increasing availability of three-dimensional (3D) protein and compound structures, existing methods predominantly focus on exploiting local features from one-dimensional protein sequences and two-dimensional molecular graphs to predict binding affinities, overlooking the 3D nature of the binding process. Here we present KDBNet, a deep learning algorithm that incorporates 3D protein and molecule structure data to predict binding affinities. KDBNet uses graph neural networks to learn structure representations of protein binding pockets and drug molecules, capturing the geometric and spatial characteristics of binding activity. In addition, we introduce an algorithm to quantify and calibrate the uncertainties of KDBNet's predictions, enhancing its utility in model-guided discovery in chemical or protein space. Experiments demonstrated that KDBNet outperforms existing deep learning models in predicting kinase–drug binding affinities. The uncertainties estimated by KDBNet are informative and well-calibrated with respect to prediction errors. When integrated with a Bayesian optimization framework, KDBNet enables data-efficient active learning and accelerates the exploration and exploitation of diverse high-binding kinase–drug pairs. Geometric deep learning has become a powerful tool in virtual drug design, but it is not always obvious when a model makes incorrect predictions. Luo and colleagues improve the accuracy of their deep learning model using uncertainty calibration and Bayesian optimization in an active learning cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助南南采纳,获得10
刚刚
Jara完成签到 ,获得积分10
刚刚
Jasper应助面面采纳,获得10
1秒前
2秒前
机智的衣发布了新的文献求助30
3秒前
3秒前
4秒前
从容芮应助lruri张采纳,获得10
4秒前
xmfffff发布了新的文献求助10
6秒前
飘逸晓曼发布了新的文献求助10
6秒前
Hello应助雪糕采纳,获得10
6秒前
木语发布了新的文献求助10
7秒前
暖暖完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
8秒前
8秒前
10秒前
小饼饼完成签到,获得积分10
10秒前
ding应助WCX采纳,获得10
10秒前
三岁完成签到,获得积分10
10秒前
zy发布了新的文献求助10
11秒前
重要的炳发布了新的文献求助10
15秒前
兜有米发布了新的文献求助10
15秒前
16秒前
强健的绮琴完成签到,获得积分10
16秒前
慕青应助科研通管家采纳,获得10
16秒前
HEIKU应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
HEIKU应助科研通管家采纳,获得10
17秒前
鲸鱼应助科研通管家采纳,获得10
17秒前
HEIKU应助科研通管家采纳,获得10
17秒前
风中的丝袜完成签到,获得积分10
17秒前
小龅牙吖发布了新的文献求助10
17秒前
桐桐应助鳎mu采纳,获得30
17秒前
华老五完成签到,获得积分10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150225
求助须知:如何正确求助?哪些是违规求助? 2801322
关于积分的说明 7844073
捐赠科研通 2458853
什么是DOI,文献DOI怎么找? 1308673
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721