Calibrated geometric deep learning improves kinase–drug binding predictions

基诺美 可药性 化学空间 人工智能 结合亲和力 计算机科学 计算生物学 药物发现 机器学习 深度学习 亲缘关系 激酶 生物 生物信息学 生物化学 基因 受体
作者
Yunan Luo,Yang Liu,Jian Peng
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (12): 1390-1401 被引量:30
标识
DOI:10.1038/s42256-023-00751-0
摘要

Protein kinases regulate various cellular functions and hold significant pharmacological promise in cancer and other diseases. Although kinase inhibitors are one of the largest groups of approved drugs, much of the human kinome remains unexplored but potentially druggable. Computational approaches, such as machine learning, offer efficient solutions for exploring kinase–compound interactions and uncovering novel binding activities. Despite the increasing availability of three-dimensional (3D) protein and compound structures, existing methods predominantly focus on exploiting local features from one-dimensional protein sequences and two-dimensional molecular graphs to predict binding affinities, overlooking the 3D nature of the binding process. Here we present KDBNet, a deep learning algorithm that incorporates 3D protein and molecule structure data to predict binding affinities. KDBNet uses graph neural networks to learn structure representations of protein binding pockets and drug molecules, capturing the geometric and spatial characteristics of binding activity. In addition, we introduce an algorithm to quantify and calibrate the uncertainties of KDBNet's predictions, enhancing its utility in model-guided discovery in chemical or protein space. Experiments demonstrated that KDBNet outperforms existing deep learning models in predicting kinase–drug binding affinities. The uncertainties estimated by KDBNet are informative and well-calibrated with respect to prediction errors. When integrated with a Bayesian optimization framework, KDBNet enables data-efficient active learning and accelerates the exploration and exploitation of diverse high-binding kinase–drug pairs. Geometric deep learning has become a powerful tool in virtual drug design, but it is not always obvious when a model makes incorrect predictions. Luo and colleagues improve the accuracy of their deep learning model using uncertainty calibration and Bayesian optimization in an active learning cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
激流勇进wb完成签到 ,获得积分10
1秒前
你小子发布了新的文献求助10
1秒前
张宇豪发布了新的文献求助10
2秒前
打打应助清修采纳,获得10
4秒前
5秒前
5秒前
5秒前
bkagyin应助爱笑灵雁采纳,获得10
5秒前
情怀应助刘玲采纳,获得10
6秒前
顾矜应助尺素寸心采纳,获得10
6秒前
6秒前
7秒前
warmth完成签到,获得积分10
7秒前
7秒前
萌面大侠完成签到,获得积分10
8秒前
陀飞轮完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
李健应助小石头采纳,获得10
9秒前
可乐发布了新的文献求助10
9秒前
你小子完成签到,获得积分10
10秒前
jialin发布了新的文献求助10
12秒前
爹爹发布了新的文献求助10
12秒前
14秒前
14秒前
16秒前
嘿嘿应助德玛西亚采纳,获得10
16秒前
17秒前
打打应助陀飞轮采纳,获得10
18秒前
尺素寸心发布了新的文献求助10
19秒前
冉宝完成签到,获得积分10
21秒前
21秒前
刘玲发布了新的文献求助10
22秒前
爱笑灵雁发布了新的文献求助10
22秒前
张宇豪完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
brightface123发布了新的文献求助10
24秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687