Calibrated geometric deep learning improves kinase–drug binding predictions

基诺美 可药性 化学空间 人工智能 结合亲和力 计算机科学 计算生物学 药物发现 机器学习 深度学习 亲缘关系 激酶 生物 生物信息学 生物化学 基因 受体
作者
Yunan Luo,Yang Liu,Jian Peng
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (12): 1390-1401 被引量:30
标识
DOI:10.1038/s42256-023-00751-0
摘要

Protein kinases regulate various cellular functions and hold significant pharmacological promise in cancer and other diseases. Although kinase inhibitors are one of the largest groups of approved drugs, much of the human kinome remains unexplored but potentially druggable. Computational approaches, such as machine learning, offer efficient solutions for exploring kinase–compound interactions and uncovering novel binding activities. Despite the increasing availability of three-dimensional (3D) protein and compound structures, existing methods predominantly focus on exploiting local features from one-dimensional protein sequences and two-dimensional molecular graphs to predict binding affinities, overlooking the 3D nature of the binding process. Here we present KDBNet, a deep learning algorithm that incorporates 3D protein and molecule structure data to predict binding affinities. KDBNet uses graph neural networks to learn structure representations of protein binding pockets and drug molecules, capturing the geometric and spatial characteristics of binding activity. In addition, we introduce an algorithm to quantify and calibrate the uncertainties of KDBNet's predictions, enhancing its utility in model-guided discovery in chemical or protein space. Experiments demonstrated that KDBNet outperforms existing deep learning models in predicting kinase–drug binding affinities. The uncertainties estimated by KDBNet are informative and well-calibrated with respect to prediction errors. When integrated with a Bayesian optimization framework, KDBNet enables data-efficient active learning and accelerates the exploration and exploitation of diverse high-binding kinase–drug pairs. Geometric deep learning has become a powerful tool in virtual drug design, but it is not always obvious when a model makes incorrect predictions. Luo and colleagues improve the accuracy of their deep learning model using uncertainty calibration and Bayesian optimization in an active learning cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不妖完成签到,获得积分10
3秒前
4秒前
搞怪以蕊发布了新的文献求助10
4秒前
烟花应助贪玩半仙采纳,获得10
5秒前
李霞客发布了新的文献求助10
5秒前
拓展完成签到 ,获得积分10
5秒前
爆米花应助怡然白桃采纳,获得40
6秒前
6秒前
7秒前
清风完成签到,获得积分10
7秒前
陈嘉良发布了新的文献求助10
8秒前
ralpher发布了新的文献求助10
9秒前
10秒前
10秒前
迅速的丑发布了新的文献求助10
11秒前
安详向日葵完成签到 ,获得积分10
12秒前
kaiyuannnnnn完成签到,获得积分10
12秒前
SciGPT应助zyc采纳,获得10
14秒前
Jue发布了新的文献求助10
15秒前
doudou发布了新的文献求助10
15秒前
寒冷谷雪发布了新的文献求助10
16秒前
菲菲完成签到 ,获得积分10
17秒前
18秒前
Owen应助陈嘉良采纳,获得10
18秒前
pyt完成签到 ,获得积分10
19秒前
20秒前
20秒前
怡然的怜烟应助刘大白采纳,获得30
22秒前
脑洞疼应助欣喜成仁采纳,获得10
23秒前
童年的秋千完成签到,获得积分10
23秒前
执着的鹏煊完成签到,获得积分10
23秒前
科研通AI6应助聂难敌采纳,获得10
24秒前
24秒前
25秒前
关耳完成签到,获得积分10
25秒前
Zx_1993应助小狗不是抠脚兵采纳,获得20
25秒前
青4096发布了新的文献求助10
26秒前
27秒前
doudou完成签到 ,获得积分10
28秒前
nenoaowu发布了新的文献求助10
29秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342879
求助须知:如何正确求助?哪些是违规求助? 4478579
关于积分的说明 13940083
捐赠科研通 4375429
什么是DOI,文献DOI怎么找? 2404055
邀请新用户注册赠送积分活动 1396617
关于科研通互助平台的介绍 1368930