已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Calibrated geometric deep learning improves kinase–drug binding predictions

基诺美 可药性 化学空间 人工智能 结合亲和力 计算机科学 计算生物学 药物发现 机器学习 深度学习 亲缘关系 激酶 生物 生物信息学 生物化学 基因 受体
作者
Yunan Luo,Yang Liu,Jian Peng
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (12): 1390-1401 被引量:30
标识
DOI:10.1038/s42256-023-00751-0
摘要

Protein kinases regulate various cellular functions and hold significant pharmacological promise in cancer and other diseases. Although kinase inhibitors are one of the largest groups of approved drugs, much of the human kinome remains unexplored but potentially druggable. Computational approaches, such as machine learning, offer efficient solutions for exploring kinase–compound interactions and uncovering novel binding activities. Despite the increasing availability of three-dimensional (3D) protein and compound structures, existing methods predominantly focus on exploiting local features from one-dimensional protein sequences and two-dimensional molecular graphs to predict binding affinities, overlooking the 3D nature of the binding process. Here we present KDBNet, a deep learning algorithm that incorporates 3D protein and molecule structure data to predict binding affinities. KDBNet uses graph neural networks to learn structure representations of protein binding pockets and drug molecules, capturing the geometric and spatial characteristics of binding activity. In addition, we introduce an algorithm to quantify and calibrate the uncertainties of KDBNet's predictions, enhancing its utility in model-guided discovery in chemical or protein space. Experiments demonstrated that KDBNet outperforms existing deep learning models in predicting kinase–drug binding affinities. The uncertainties estimated by KDBNet are informative and well-calibrated with respect to prediction errors. When integrated with a Bayesian optimization framework, KDBNet enables data-efficient active learning and accelerates the exploration and exploitation of diverse high-binding kinase–drug pairs. Geometric deep learning has become a powerful tool in virtual drug design, but it is not always obvious when a model makes incorrect predictions. Luo and colleagues improve the accuracy of their deep learning model using uncertainty calibration and Bayesian optimization in an active learning cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
aa完成签到,获得积分20
7秒前
8秒前
senli2018发布了新的文献求助10
9秒前
Owen应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得50
14秒前
爆米花应助科研通管家采纳,获得30
14秒前
orixero应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
科目三应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
15秒前
希望天下0贩的0应助nono采纳,获得10
24秒前
李海完成签到,获得积分10
26秒前
26秒前
神勇元瑶完成签到,获得积分20
36秒前
37秒前
38秒前
踏实的老四完成签到,获得积分10
38秒前
39秒前
39秒前
pluto应助堃堃boom采纳,获得10
40秒前
nono发布了新的文献求助10
41秒前
王金农发布了新的文献求助10
44秒前
11发布了新的文献求助10
45秒前
陈年人少熬夜完成签到 ,获得积分10
46秒前
48秒前
51秒前
吕佩完成签到,获得积分10
51秒前
hhh完成签到 ,获得积分10
52秒前
甜甜若冰发布了新的文献求助10
54秒前
1分钟前
1分钟前
科研通AI2S应助47gongjiang采纳,获得10
1分钟前
卷卷233611发布了新的文献求助10
1分钟前
1分钟前
哑巴和喇叭完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431945
求助须知:如何正确求助?哪些是违规求助? 4544768
关于积分的说明 14193772
捐赠科研通 4463994
什么是DOI,文献DOI怎么找? 2446920
邀请新用户注册赠送积分活动 1438241
关于科研通互助平台的介绍 1415027