Calibrated geometric deep learning improves kinase–drug binding predictions

基诺美 可药性 化学空间 人工智能 结合亲和力 计算机科学 计算生物学 药物发现 机器学习 深度学习 亲缘关系 激酶 生物 生物信息学 生物化学 基因 受体
作者
Yunan Luo,Yang Liu,Jian Peng
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:5 (12): 1390-1401 被引量:30
标识
DOI:10.1038/s42256-023-00751-0
摘要

Protein kinases regulate various cellular functions and hold significant pharmacological promise in cancer and other diseases. Although kinase inhibitors are one of the largest groups of approved drugs, much of the human kinome remains unexplored but potentially druggable. Computational approaches, such as machine learning, offer efficient solutions for exploring kinase–compound interactions and uncovering novel binding activities. Despite the increasing availability of three-dimensional (3D) protein and compound structures, existing methods predominantly focus on exploiting local features from one-dimensional protein sequences and two-dimensional molecular graphs to predict binding affinities, overlooking the 3D nature of the binding process. Here we present KDBNet, a deep learning algorithm that incorporates 3D protein and molecule structure data to predict binding affinities. KDBNet uses graph neural networks to learn structure representations of protein binding pockets and drug molecules, capturing the geometric and spatial characteristics of binding activity. In addition, we introduce an algorithm to quantify and calibrate the uncertainties of KDBNet's predictions, enhancing its utility in model-guided discovery in chemical or protein space. Experiments demonstrated that KDBNet outperforms existing deep learning models in predicting kinase–drug binding affinities. The uncertainties estimated by KDBNet are informative and well-calibrated with respect to prediction errors. When integrated with a Bayesian optimization framework, KDBNet enables data-efficient active learning and accelerates the exploration and exploitation of diverse high-binding kinase–drug pairs. Geometric deep learning has become a powerful tool in virtual drug design, but it is not always obvious when a model makes incorrect predictions. Luo and colleagues improve the accuracy of their deep learning model using uncertainty calibration and Bayesian optimization in an active learning cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZKYYYY完成签到 ,获得积分10
刚刚
如意雅山发布了新的文献求助10
刚刚
宋子琛完成签到,获得积分10
刚刚
ch3oh完成签到,获得积分10
刚刚
风口上的飞猪完成签到,获得积分10
刚刚
刚刚
1秒前
lala完成签到,获得积分10
1秒前
今后应助i羽翼深蓝i采纳,获得10
1秒前
红丽阿妹完成签到,获得积分10
1秒前
lezard发布了新的文献求助10
1秒前
2秒前
sasa发布了新的文献求助10
2秒前
艾斯完成签到 ,获得积分10
2秒前
好好好完成签到,获得积分10
2秒前
思源应助ZC采纳,获得10
2秒前
阿会完成签到,获得积分10
3秒前
贪玩鸵鸟发布了新的文献求助10
3秒前
balabla完成签到,获得积分10
3秒前
3秒前
123完成签到,获得积分10
3秒前
陌日遗迹完成签到,获得积分10
4秒前
陆程岚完成签到,获得积分10
4秒前
大模型应助yangxt-iga采纳,获得10
4秒前
青岛港最帅的人完成签到,获得积分10
4秒前
zhzzhz完成签到,获得积分10
4秒前
xiaolanliu完成签到,获得积分10
4秒前
michael发布了新的文献求助30
4秒前
一只不受管束的小狸Miao完成签到 ,获得积分10
5秒前
卓垚完成签到,获得积分10
5秒前
风趣飞柏发布了新的文献求助10
5秒前
SucceedIn完成签到,获得积分10
5秒前
佳佳发布了新的文献求助10
5秒前
HUAhua完成签到,获得积分10
6秒前
azen完成签到,获得积分10
6秒前
lllllsy发布了新的文献求助10
6秒前
优美茹妖完成签到,获得积分10
6秒前
多花基因完成签到,获得积分10
6秒前
无畏完成签到,获得积分10
7秒前
jialu发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977