Disrupted topologic efficiency of brain functional connectome in de novo Parkinson's disease with depression

神经科学 连接体 功能磁共振成像 帕金森病 心理学 静息状态功能磁共振成像 萧条(经济学) 海马旁回 功能连接 连接组学 疾病 医学 癫痫 内科学 颞叶 经济 宏观经济学
作者
Hui Wang,Xiaoyan Zhan,Jianxia Xu,Miao Yu,Zhiying Guo,Gaiyan Zhou,Jingru Ren,Ronggui Zhang,Weiguo Liu
出处
期刊:European Journal of Neuroscience [Wiley]
卷期号:58 (11): 4371-4383 被引量:2
标识
DOI:10.1111/ejn.16176
摘要

Abstract Growing evidence supports that depression in Parkinson's disease (PD) depends on disruptions in specific neural networks rather than regional dysfunction. According to the resting‐state functional magnetic resonance imaging data, the study attempted to decipher the alterations in the topological properties of brain networks in de novo depression in PD (DPD). The study also explored the neural network basis for depressive symptoms in PD. We recruited 20 DPD, 37 non‐depressed PD and 41 healthy controls (HC). The Graph theory and network‐based statistical methods helped analyse the topological properties of brain functional networks and anomalous subnetworks across these groups. The relationship between altered properties and depression severity was also investigated. DPD revealed significantly reduced nodal efficiency in the left superior temporal gyrus. Additionally, DPD decreased five hubs, primarily located in the temporal‐occipital cortex, and increased seven hubs, mainly distributed in the limbic cortico‐basal ganglia circuit. The betweenness centrality of the left Medio Ventral Occipital Cortex was positively associated with depressive scores in DPD. In contrast to HC, DPD had a multi‐connected subnetwork with significantly lower connectivity, primarily distributed in the visual, somatomotor, dorsal attention and default networks. Regional topological disruptions in the temporal‐occipital region are critical in the DPD neurological mechanism. It might suggest a potential network biomarker among newly diagnosed DPD patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
刚刚
七七发布了新的文献求助10
1秒前
13333发布了新的文献求助10
1秒前
田様应助心流采纳,获得10
1秒前
嘻嘻哈哈完成签到 ,获得积分10
2秒前
爆米花应助MMMMMa采纳,获得10
2秒前
轨迹应助Harry采纳,获得30
2秒前
fkalltn发布了新的文献求助10
2秒前
ivy完成签到,获得积分10
2秒前
罗dd完成签到,获得积分10
2秒前
红鸟完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
火星上半仙完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Lyue完成签到,获得积分10
4秒前
5秒前
852应助锋芒不毕露采纳,获得30
5秒前
科研通AI2S应助自由语柳采纳,获得10
5秒前
wdy发布了新的文献求助20
5秒前
Jiang发布了新的文献求助10
5秒前
大胆的厉关注了科研通微信公众号
5秒前
6秒前
6秒前
共享精神应助Zosty采纳,获得10
6秒前
猪米妮发布了新的文献求助10
7秒前
香蕉觅云应助zhangxl123采纳,获得10
7秒前
酷波er应助13333采纳,获得10
7秒前
zza应助小太阳采纳,获得10
8秒前
8秒前
守护发布了新的文献求助10
8秒前
张牧之完成签到 ,获得积分10
9秒前
多情的寻真完成签到,获得积分10
9秒前
9秒前
15940203654完成签到 ,获得积分10
9秒前
Xc完成签到,获得积分10
10秒前
LaLune发布了新的文献求助10
10秒前
传奇3应助第七个星球采纳,获得10
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699679
求助须知:如何正确求助?哪些是违规求助? 5132628
关于积分的说明 15227678
捐赠科研通 4854695
什么是DOI,文献DOI怎么找? 2604865
邀请新用户注册赠送积分活动 1556246
关于科研通互助平台的介绍 1514444