The use of weakly supervised machine learning for necrosis assessment in patients with osteosarcoma: A pilot study

骨肉瘤 医学 机器学习 人工智能 坏死 计算机科学 病理
作者
Christa L. LiBrizzi,Zhenzhen Wang,Jeremias Sulam,Aaron W. James,Adam S. Levin,Carol D. Morris
出处
期刊:Journal of Orthopaedic Research [Wiley]
卷期号:42 (2): 453-459
标识
DOI:10.1002/jor.25693
摘要

Abstract Percent necrosis (PN) following chemotherapy is a prognostic factor for survival in osteosarcoma. Pathologists estimate PN by calculating tumor viability over an average of whole‐slide images (WSIs). This non‐standardized, labor‐intensive process requires specialized training and has high interobserver variability. Therefore, we aimed to develop a machine‐learning model capable of calculating PN in osteosarcoma with similar accuracy to that of a musculoskeletal pathologist. In this proof‐of‐concept study, we retrospectively obtained six WSIs from two patients with conventional osteosarcomas. A weakly supervised learning model was trained by using coarse and incomplete annotations of viable tumor, necrotic tumor, and nontumor tissue in WSIs. Weakly supervised learning refers to processes capable of creating predictive models on the basis of partially and imprecisely annotated data. Once “trained,” the model segmented areas of tissue and determined PN of the same six WSIs. To assess model fidelity, the pathologist also estimated PN of each WSI, and we compared the estimates using Pearson's correlation and mean absolute error (MAE). MAE was 15% over the six samples, and 6.4% when an outlier was removed, for which the model inaccurately labeled cartilaginous tissue. The model and pathologist estimates were strongly, positively correlated ( r = 0.85). Thus, we created and trained a weakly supervised machine learning model to segment viable tumor, necrotic tumor, and nontumor and to calculate PN with accuracy similar to that of a musculoskeletal pathologist. We expect improvement can be achieved by annotating cartilaginous and other mesenchymal tissue for better representation of the histological heterogeneity in osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tophet完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
FashionBoy应助落落采纳,获得10
2秒前
活力的青枫完成签到 ,获得积分10
2秒前
苏素肃发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
空禅yew发布了新的文献求助10
4秒前
汉堡包应助花开的声音1217采纳,获得10
4秒前
ying发布了新的文献求助10
4秒前
animenz完成签到,获得积分10
5秒前
tY发布了新的文献求助10
6秒前
OJL发布了新的文献求助10
6秒前
6秒前
6秒前
柒柒完成签到,获得积分10
6秒前
丘比特应助111采纳,获得10
7秒前
8秒前
8秒前
XShu完成签到,获得积分20
8秒前
xx完成签到 ,获得积分10
9秒前
羊知鱼完成签到,获得积分10
10秒前
公茂源发布了新的文献求助30
10秒前
搞怪不言发布了新的文献求助10
11秒前
DDDD完成签到,获得积分10
11秒前
陈莹发布了新的文献求助10
11秒前
执着的幻柏完成签到,获得积分10
11秒前
12秒前
12秒前
苏素肃完成签到,获得积分10
12秒前
隐形曼青应助sw98318采纳,获得10
13秒前
wangyanwxy发布了新的文献求助10
14秒前
14秒前
搜集达人应助WTF采纳,获得10
15秒前
Ava应助陆靖易采纳,获得10
15秒前
daishuheng完成签到 ,获得积分10
16秒前
OJL完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808