亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The use of weakly supervised machine learning for necrosis assessment in patients with osteosarcoma: A pilot study

骨肉瘤 医学 机器学习 人工智能 坏死 计算机科学 病理
作者
Christa L. LiBrizzi,Zhenzhen Wang,Jeremias Sulam,Aaron W. James,Adam S. Levin,Carol D. Morris
出处
期刊:Journal of Orthopaedic Research [Wiley]
卷期号:42 (2): 453-459
标识
DOI:10.1002/jor.25693
摘要

Abstract Percent necrosis (PN) following chemotherapy is a prognostic factor for survival in osteosarcoma. Pathologists estimate PN by calculating tumor viability over an average of whole‐slide images (WSIs). This non‐standardized, labor‐intensive process requires specialized training and has high interobserver variability. Therefore, we aimed to develop a machine‐learning model capable of calculating PN in osteosarcoma with similar accuracy to that of a musculoskeletal pathologist. In this proof‐of‐concept study, we retrospectively obtained six WSIs from two patients with conventional osteosarcomas. A weakly supervised learning model was trained by using coarse and incomplete annotations of viable tumor, necrotic tumor, and nontumor tissue in WSIs. Weakly supervised learning refers to processes capable of creating predictive models on the basis of partially and imprecisely annotated data. Once “trained,” the model segmented areas of tissue and determined PN of the same six WSIs. To assess model fidelity, the pathologist also estimated PN of each WSI, and we compared the estimates using Pearson's correlation and mean absolute error (MAE). MAE was 15% over the six samples, and 6.4% when an outlier was removed, for which the model inaccurately labeled cartilaginous tissue. The model and pathologist estimates were strongly, positively correlated ( r = 0.85). Thus, we created and trained a weakly supervised machine learning model to segment viable tumor, necrotic tumor, and nontumor and to calculate PN with accuracy similar to that of a musculoskeletal pathologist. We expect improvement can be achieved by annotating cartilaginous and other mesenchymal tissue for better representation of the histological heterogeneity in osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心蜜粉完成签到,获得积分10
1秒前
13秒前
Master发布了新的文献求助10
20秒前
英俊的铭应助Magali采纳,获得10
27秒前
48秒前
1分钟前
祖之微笑发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
33应助可靠的寒风采纳,获得20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
JamesPei应助背后梦安采纳,获得10
2分钟前
3分钟前
祖之微笑发布了新的文献求助10
3分钟前
祖之微笑完成签到,获得积分10
3分钟前
3分钟前
Magali发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
shinian完成签到,获得积分10
4分钟前
shinian发布了新的文献求助10
4分钟前
4分钟前
4分钟前
哈尔滨发布了新的文献求助10
4分钟前
背后梦安发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
zhen完成签到,获得积分10
5分钟前
哈尔滨完成签到,获得积分20
5分钟前
5分钟前
米奇妙妙屋完成签到,获得积分10
5分钟前
tylscxf完成签到,获得积分10
5分钟前
YifanWang完成签到,获得积分0
5分钟前
量子星尘发布了新的文献求助30
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976649
求助须知:如何正确求助?哪些是违规求助? 3520756
关于积分的说明 11204743
捐赠科研通 3257502
什么是DOI,文献DOI怎么找? 1798733
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806629