The use of weakly supervised machine learning for necrosis assessment in patients with osteosarcoma: A pilot study

骨肉瘤 医学 机器学习 人工智能 坏死 计算机科学 病理
作者
Christa L. LiBrizzi,Zhenzhen Wang,Jeremias Sulam,Aaron W. James,Adam S. Levin,Carol D. Morris
出处
期刊:Journal of Orthopaedic Research [Wiley]
卷期号:42 (2): 453-459
标识
DOI:10.1002/jor.25693
摘要

Abstract Percent necrosis (PN) following chemotherapy is a prognostic factor for survival in osteosarcoma. Pathologists estimate PN by calculating tumor viability over an average of whole‐slide images (WSIs). This non‐standardized, labor‐intensive process requires specialized training and has high interobserver variability. Therefore, we aimed to develop a machine‐learning model capable of calculating PN in osteosarcoma with similar accuracy to that of a musculoskeletal pathologist. In this proof‐of‐concept study, we retrospectively obtained six WSIs from two patients with conventional osteosarcomas. A weakly supervised learning model was trained by using coarse and incomplete annotations of viable tumor, necrotic tumor, and nontumor tissue in WSIs. Weakly supervised learning refers to processes capable of creating predictive models on the basis of partially and imprecisely annotated data. Once “trained,” the model segmented areas of tissue and determined PN of the same six WSIs. To assess model fidelity, the pathologist also estimated PN of each WSI, and we compared the estimates using Pearson's correlation and mean absolute error (MAE). MAE was 15% over the six samples, and 6.4% when an outlier was removed, for which the model inaccurately labeled cartilaginous tissue. The model and pathologist estimates were strongly, positively correlated ( r = 0.85). Thus, we created and trained a weakly supervised machine learning model to segment viable tumor, necrotic tumor, and nontumor and to calculate PN with accuracy similar to that of a musculoskeletal pathologist. We expect improvement can be achieved by annotating cartilaginous and other mesenchymal tissue for better representation of the histological heterogeneity in osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助srui采纳,获得10
1秒前
zmayq完成签到,获得积分10
1秒前
瓜姐发布了新的文献求助10
2秒前
egg完成签到,获得积分10
2秒前
鲤鱼白枫完成签到,获得积分10
3秒前
3秒前
7777发布了新的文献求助10
3秒前
4秒前
11关注了科研通微信公众号
4秒前
4秒前
4秒前
5秒前
Super Zzzz完成签到,获得积分10
5秒前
5秒前
yar应助小鱼采纳,获得10
6秒前
鱼瓜瓜完成签到,获得积分10
6秒前
遇见完成签到,获得积分20
7秒前
7秒前
成就飞柏发布了新的文献求助10
8秒前
朴实完成签到,获得积分10
8秒前
NexusExplorer应助wualexandra采纳,获得10
9秒前
wy发布了新的文献求助10
9秒前
啊呀完成签到,获得积分10
9秒前
lovekobe完成签到,获得积分10
10秒前
kk完成签到,获得积分10
10秒前
魔幻的盼芙完成签到 ,获得积分10
10秒前
psychosocial发布了新的文献求助10
10秒前
11秒前
uraylong发布了新的文献求助10
11秒前
kk发布了新的文献求助10
12秒前
汉堡包应助Tiscen采纳,获得10
12秒前
斯文败类应助玉洁采纳,获得10
14秒前
14秒前
瓜姐完成签到,获得积分10
14秒前
PQ发布了新的文献求助10
15秒前
Lucas应助123456采纳,获得10
15秒前
121231完成签到,获得积分10
15秒前
15秒前
超体完成签到 ,获得积分10
16秒前
lk发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970802
求助须知:如何正确求助?哪些是违规求助? 3515474
关于积分的说明 11178714
捐赠科研通 3250627
什么是DOI,文献DOI怎么找? 1795390
邀请新用户注册赠送积分活动 875818
科研通“疑难数据库(出版商)”最低求助积分说明 805183