The use of weakly supervised machine learning for necrosis assessment in patients with osteosarcoma: A pilot study

骨肉瘤 医学 机器学习 人工智能 坏死 计算机科学 病理
作者
Christa L. LiBrizzi,Zhenzhen Wang,Jeremias Sulam,Aaron W. James,Adam S. Levin,Carol D. Morris
出处
期刊:Journal of Orthopaedic Research [Wiley]
卷期号:42 (2): 453-459
标识
DOI:10.1002/jor.25693
摘要

Abstract Percent necrosis (PN) following chemotherapy is a prognostic factor for survival in osteosarcoma. Pathologists estimate PN by calculating tumor viability over an average of whole‐slide images (WSIs). This non‐standardized, labor‐intensive process requires specialized training and has high interobserver variability. Therefore, we aimed to develop a machine‐learning model capable of calculating PN in osteosarcoma with similar accuracy to that of a musculoskeletal pathologist. In this proof‐of‐concept study, we retrospectively obtained six WSIs from two patients with conventional osteosarcomas. A weakly supervised learning model was trained by using coarse and incomplete annotations of viable tumor, necrotic tumor, and nontumor tissue in WSIs. Weakly supervised learning refers to processes capable of creating predictive models on the basis of partially and imprecisely annotated data. Once “trained,” the model segmented areas of tissue and determined PN of the same six WSIs. To assess model fidelity, the pathologist also estimated PN of each WSI, and we compared the estimates using Pearson's correlation and mean absolute error (MAE). MAE was 15% over the six samples, and 6.4% when an outlier was removed, for which the model inaccurately labeled cartilaginous tissue. The model and pathologist estimates were strongly, positively correlated ( r = 0.85). Thus, we created and trained a weakly supervised machine learning model to segment viable tumor, necrotic tumor, and nontumor and to calculate PN with accuracy similar to that of a musculoskeletal pathologist. We expect improvement can be achieved by annotating cartilaginous and other mesenchymal tissue for better representation of the histological heterogeneity in osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leo关闭了leo文献求助
1秒前
推土机爱学习完成签到 ,获得积分10
1秒前
李萍萍发布了新的文献求助10
1秒前
1秒前
fdwang完成签到 ,获得积分10
1秒前
清漪完成签到 ,获得积分10
2秒前
深情安青应助海白采纳,获得10
2秒前
晴栀完成签到,获得积分10
2秒前
hetao286完成签到,获得积分10
3秒前
阿三的风光完成签到 ,获得积分10
3秒前
nature完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
科研狗完成签到 ,获得积分10
5秒前
追光者完成签到,获得积分10
5秒前
HJJHJH发布了新的文献求助10
6秒前
Advance.Cheng发布了新的文献求助10
6秒前
传统的大白完成签到,获得积分10
6秒前
复杂的白秋完成签到,获得积分10
7秒前
7秒前
舒适的平蓝完成签到,获得积分10
8秒前
DAI123完成签到,获得积分10
8秒前
8秒前
阳yang发布了新的文献求助10
8秒前
HIH完成签到 ,获得积分10
9秒前
可靠的寒风完成签到,获得积分10
10秒前
Pan完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
丢丢丢完成签到,获得积分10
11秒前
安静的ky完成签到,获得积分10
11秒前
JamesPei应助mary采纳,获得10
11秒前
木子林夕完成签到,获得积分10
11秒前
勤奋尔丝完成签到 ,获得积分10
12秒前
12秒前
13秒前
haozi完成签到,获得积分10
13秒前
啾啾啾发布了新的文献求助30
14秒前
KK发布了新的文献求助10
14秒前
魏魏魏完成签到,获得积分10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038426
求助须知:如何正确求助?哪些是违规求助? 3576119
关于积分的说明 11374556
捐赠科研通 3305834
什么是DOI,文献DOI怎么找? 1819339
邀请新用户注册赠送积分活动 892678
科研通“疑难数据库(出版商)”最低求助积分说明 815029