The use of weakly supervised machine learning for necrosis assessment in patients with osteosarcoma: A pilot study

骨肉瘤 医学 机器学习 人工智能 坏死 计算机科学 病理
作者
Christa L. LiBrizzi,Zhenzhen Wang,Jeremias Sulam,Aaron W. James,Adam S. Levin,Carol D. Morris
出处
期刊:Journal of Orthopaedic Research [Wiley]
卷期号:42 (2): 453-459
标识
DOI:10.1002/jor.25693
摘要

Abstract Percent necrosis (PN) following chemotherapy is a prognostic factor for survival in osteosarcoma. Pathologists estimate PN by calculating tumor viability over an average of whole‐slide images (WSIs). This non‐standardized, labor‐intensive process requires specialized training and has high interobserver variability. Therefore, we aimed to develop a machine‐learning model capable of calculating PN in osteosarcoma with similar accuracy to that of a musculoskeletal pathologist. In this proof‐of‐concept study, we retrospectively obtained six WSIs from two patients with conventional osteosarcomas. A weakly supervised learning model was trained by using coarse and incomplete annotations of viable tumor, necrotic tumor, and nontumor tissue in WSIs. Weakly supervised learning refers to processes capable of creating predictive models on the basis of partially and imprecisely annotated data. Once “trained,” the model segmented areas of tissue and determined PN of the same six WSIs. To assess model fidelity, the pathologist also estimated PN of each WSI, and we compared the estimates using Pearson's correlation and mean absolute error (MAE). MAE was 15% over the six samples, and 6.4% when an outlier was removed, for which the model inaccurately labeled cartilaginous tissue. The model and pathologist estimates were strongly, positively correlated ( r = 0.85). Thus, we created and trained a weakly supervised machine learning model to segment viable tumor, necrotic tumor, and nontumor and to calculate PN with accuracy similar to that of a musculoskeletal pathologist. We expect improvement can be achieved by annotating cartilaginous and other mesenchymal tissue for better representation of the histological heterogeneity in osteosarcoma.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
frenchfriespie完成签到,获得积分10
1秒前
zhangxiao发布了新的文献求助10
1秒前
小周完成签到,获得积分20
2秒前
sue完成签到 ,获得积分20
2秒前
gggyyy完成签到,获得积分10
2秒前
2秒前
强健的电源完成签到,获得积分10
2秒前
11完成签到,获得积分10
3秒前
Joanna完成签到,获得积分10
4秒前
strong.quite完成签到,获得积分10
4秒前
哲999完成签到,获得积分10
4秒前
LHW发布了新的文献求助10
4秒前
鲤鱼初柳发布了新的文献求助10
4秒前
李嘉图的栗子完成签到,获得积分10
4秒前
sing发布了新的文献求助10
6秒前
山长子发布了新的文献求助10
6秒前
动人的剑完成签到,获得积分10
7秒前
李东洋完成签到,获得积分10
7秒前
豆豆发布了新的文献求助10
7秒前
寒冷妙梦发布了新的文献求助10
7秒前
焦野完成签到,获得积分10
8秒前
8秒前
Duduk完成签到,获得积分10
8秒前
阳光的紫丝完成签到 ,获得积分10
9秒前
风中的嚓茶完成签到,获得积分10
9秒前
萧水白应助忧虑的土豆采纳,获得10
9秒前
10秒前
山鸟与鱼不同路完成签到 ,获得积分10
11秒前
研友_VZG7GZ应助鲤鱼初柳采纳,获得10
11秒前
小蘑菇应助gggyyy采纳,获得10
11秒前
12秒前
12秒前
yufanhui举报坚强的笑天求助涉嫌违规
13秒前
科研通AI2S应助kerguelen采纳,获得10
13秒前
dongdongqiang完成签到,获得积分10
13秒前
polarbear完成签到 ,获得积分10
13秒前
14秒前
千里共婵娟完成签到,获得积分10
14秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143003
求助须知:如何正确求助?哪些是违规求助? 2794045
关于积分的说明 7809520
捐赠科研通 2450348
什么是DOI,文献DOI怎么找? 1303779
科研通“疑难数据库(出版商)”最低求助积分说明 627056
版权声明 601384