Rethinking SnSe Thermoelectrics from Computational Materials Science

热电材料 工程物理 热电效应 带隙 材料科学 纳米技术 光电子学 化学物理 化学 热力学 物理
作者
Shulin Bai,Xiao Zhang,Li‐Dong Zhao
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:56 (21): 3065-3075 被引量:28
标识
DOI:10.1021/acs.accounts.3c00490
摘要

ConspectusThe growing energy crisis and the adverse environmental impacts caused by carbon-based energy consumption have spurred the exploration of green and sustainable energy. Researchers have been devoted to developing thermoelectric technology that could directly and reversibly convert heat into electricity. By virtue of zero emissions, nonmoving parts, precise temperature control, and long service life, thermoelectrics exhibit broad application in power generation and refrigeration. Nevertheless, traditional narrow-bandgap thermoelectrics exhibit high performance within a narrow temperature range, limiting the overall energy conversion. Consequently, a selection rule for exploring advanced thermoelectrics was proposed: materials with wide-bandgap, crystals form, asymmetry, and anisotropic structure. According to the rules, we conducted much research and found some promising materials.As the lead-free, cost-effective, and stable thermoelectric candidates, layered SnSe crystals with wide-bandgap and covalent bonding have gained significant attention due to their ultralow thermal conductivity resulting from strong bonding anharmonicity, via strong polar covalent bonding, because of the electronegativity difference between the Sn and Se atoms. This was proved to be the result from the unique structure of layered SnSe crystals, a distorted rock-salt structure with high and anisotropic Grüneisen parameters. In this Account, we introduce and rethink our recent advancements in developing high-performance thermoelectric SnSe crystals from computational materials science, involving p- and n-type SnSe crystals, respectively. For p-type SnSe crystals, according to the complex valence band structures, we utilized the multiband synglisis via electronic structure calculations and multiband simulations to activate valence bands to participate in electrical transport of in-plane direction, achieving an ultrahigh power factor (PF) of ∼75 μW cm-1 K-2 at room temperature and an average figure-of-merit ZTave of ∼1.9 for Sn0.91Pb0.09Se. Besides, on the basis of defect chemistry, the characteristics of p-type SnSe crystals are determined by intrinsic Sn vacancies. We thus used point-defect calculations to achieve the lattice plainification, and we fixed the lattice intrinsic defects to weaken defect scattering of carriers along the in-plane direction, facilitating further a PF > 100 μW cm-1 K-2 and a ZT of ∼1.5 at room temperature for SnCu0.001Se. For n-type SnSe crystals, inspired by the anisotropic characteristics of the layered materials, we analyzed charge density and proposed the insight of 3D charge and 2D phonon transports and calculated the deformation potential to manipulate layered phonon-electron decoupling to achieve high performance, ultimately Pb-alloyed and Cl-doped SnSe (SnSe-Cl-PbSe) reaching a ZTave of ∼1.7 from 300 to 773 K. In the end, we offer potential perspectives on high-throughput calculations (HTC) and machine learning (ML), combined with our proposed insights, which could be a promising avenue for future thermoelectrics. By virtue of our theoretical and experimental understanding of thermoelectrics, integrating these insights as rules and descriptors for HTC and ML will accelerate the research and development of thermoelectrics. We want to share our recent works and latest perspectives in SnSe thermoelectrics, and we expect to inspire enthusiasm for innovative research on advanced thermoelectric materials and devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chrisyan发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
李爱国应助ii采纳,获得10
2秒前
dazzle完成签到,获得积分10
3秒前
刘迪完成签到,获得积分20
5秒前
迅速冰岚发布了新的文献求助10
5秒前
6秒前
火星上火龙果完成签到,获得积分10
8秒前
刘迪发布了新的文献求助10
11秒前
11秒前
12秒前
科研通AI5应助adfadf采纳,获得10
13秒前
肖淑美完成签到 ,获得积分10
14秒前
比蓝色更深完成签到,获得积分10
14秒前
材化小将军完成签到,获得积分10
14秒前
田様应助科研通管家采纳,获得50
15秒前
Leon应助科研通管家采纳,获得30
15秒前
华仔应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
英姑应助科研通管家采纳,获得30
15秒前
kk完成签到,获得积分10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
Akim应助科研通管家采纳,获得10
15秒前
田様应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
15秒前
sutharsons应助科研通管家采纳,获得30
15秒前
星河完成签到,获得积分10
18秒前
SDNUDRUG完成签到,获得积分10
18秒前
Rex完成签到,获得积分20
18秒前
LU41完成签到,获得积分10
18秒前
okbasf完成签到,获得积分10
18秒前
平常的镜子应助dingning采纳,获得20
20秒前
21秒前
完美世界应助迷路以筠采纳,获得10
24秒前
momo完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851