Composition, heat treatment, microstructure and loading condition based machine learning prediction of creep life of superalloys

蠕动 高温合金 材料科学 微观结构 聚类分析 冶金 计算机科学 人工智能
作者
Ronghai Wu,Zeng Lei,Jiangkun Fan,Zichao Peng,Yunsong Zhao
出处
期刊:Mechanics of Materials [Elsevier]
卷期号:187: 104819-104819 被引量:4
标识
DOI:10.1016/j.mechmat.2023.104819
摘要

Creep life is a key property of superalloys that are typically used in advanced engine turbine. The creep life of superalloys is mainly determined by factors including compositions, heat treatment processes, microstructures and loading conditions. Nevertheless, it still remains a big challenge to link these factors and creep life, due to the amount of variables and complex relations regarding the factors affecting creep life. In the present work, we solve this issue by a machine learning method. The dimension of the factors affecting creep life is reduced by principle component analysis, followed by clustering of the principle components. Then a proper regression method is chosen for each cluster such that an optimal model is formed for each cluster. The results show that the predicted creep lives agree with experimental creep lives well. New combinations of composition, heat treatment, microstructure and loading condition with better creep lives are proposed for the development of superalloys. Additionally, the present machine learning method is compared with existing machine learning methods for creep of superalloys. The comparison shows that the accuracy and efficiency of the present machine learning method are both considerably improved. Hence, the present method is useful for effective development of superalloys.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ivyyyyyy完成签到,获得积分10
刚刚
包容听南发布了新的文献求助10
刚刚
1秒前
qqq发布了新的文献求助10
1秒前
1秒前
2秒前
大个应助Indexxx采纳,获得10
3秒前
zhendezy发布了新的文献求助10
3秒前
YAMO一发布了新的文献求助10
3秒前
3秒前
4秒前
慕青应助Seathern采纳,获得10
5秒前
5秒前
6秒前
assdd完成签到,获得积分10
6秒前
Moshans完成签到,获得积分10
7秒前
梁小氓完成签到 ,获得积分10
7秒前
7秒前
英俊的铭应助南敏株采纳,获得10
7秒前
zk001完成签到,获得积分10
8秒前
NaNa发布了新的文献求助10
8秒前
8秒前
8秒前
xqc发布了新的文献求助10
9秒前
汉堡包应助dany采纳,获得10
9秒前
9秒前
CipherSage应助qqq采纳,获得10
10秒前
10秒前
丘比特应助小白鼠采纳,获得10
10秒前
NexusExplorer应助霸气靖雁采纳,获得10
10秒前
今后应助ZeSheng采纳,获得10
11秒前
11秒前
11秒前
YAMO一完成签到,获得积分10
12秒前
Rrr发布了新的文献求助20
12秒前
量子星尘发布了新的文献求助10
12秒前
Ming Chen发布了新的文献求助10
12秒前
12秒前
12秒前
彭于晏应助zhendezy采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609846
求助须知:如何正确求助?哪些是违规求助? 4694420
关于积分的说明 14882214
捐赠科研通 4720449
什么是DOI,文献DOI怎么找? 2544941
邀请新用户注册赠送积分活动 1509785
关于科研通互助平台的介绍 1473002