High Confidence Single Particle Analysis with Machine Learning

粒子(生态学) 单粒子分析 随机性 集成学习 化学 生物系统 选择(遗传算法) 人工智能 计算机科学 统计物理学 物理 统计 海洋学 数学 气溶胶 有机化学 生物 地质学
作者
Zhang Wu,Yun Peng,Hui Liu,Cheng Zhi Huang,Jun Zhou
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (41): 15375-15383 被引量:4
标识
DOI:10.1021/acs.analchem.3c03297
摘要

Single particle analysis can effectively determine the heterogeneity between particles based on the local information on a single particle, which is utilized extensively for monitoring chemical reactions and biological activities. However, the study of obtaining ensemble reaction information at the single particle level, which can obtain both the structural and functional heterogeneity of particles as well as the ensemble reaction information, is challenging because the selection of a single particle mainly depends on experience, which will lead to a certain randomness when analyzing the ensemble reaction with single particles. Using machine learning, it is demonstrated that the proposed intelligent single particle analysis strategy can provide single particle and ensemble analyses with high confidence. Convolutional neural network and Gaussian mixture model were utilized to develop a machine learning model for resonance scattering imaging analysis of plasmonic nanoparticles. It can identify the scattered light of single particles and select representative or diverse particles. When single particle scattering imaging is used to obtain ensemble information on the reaction, the error caused by the selection of individual particles can be significantly reduced by selecting representative particles. In addition, the real situation of the reaction can be better revealed by selecting diverse particles. These results indicate that the intelligent single particle analysis strategy has great potential for imaging analysis and biological sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助十四阙采纳,获得10
刚刚
刚刚
刚刚
小白发布了新的文献求助10
刚刚
杜啰嗦完成签到 ,获得积分10
1秒前
不会做科研完成签到,获得积分10
1秒前
没得到发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
南瓜咸杏完成签到,获得积分10
3秒前
3秒前
维拉帕米完成签到,获得积分10
4秒前
4秒前
坚定岂愈发布了新的文献求助10
4秒前
5秒前
高效毕业完成签到,获得积分10
6秒前
Momo发布了新的文献求助10
6秒前
7秒前
henry发布了新的文献求助20
7秒前
10秒前
10秒前
10秒前
小白完成签到,获得积分10
10秒前
可耐的海豚完成签到 ,获得积分10
10秒前
郝宝真发布了新的文献求助10
11秒前
FashionBoy应助失眠灭男采纳,获得10
11秒前
CipherSage应助Sy0v0采纳,获得10
11秒前
attilio发布了新的文献求助20
11秒前
11秒前
Folivo完成签到 ,获得积分10
11秒前
开心的雁芙完成签到,获得积分10
12秒前
淡然元珊发布了新的文献求助10
12秒前
思思完成签到,获得积分10
13秒前
善学以致用应助Yolo采纳,获得10
13秒前
Air关注了科研通微信公众号
13秒前
CodeCraft应助21采纳,获得10
13秒前
13秒前
Lei发布了新的文献求助10
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144663
求助须知:如何正确求助?哪些是违规求助? 2796129
关于积分的说明 7818009
捐赠科研通 2452286
什么是DOI,文献DOI怎么找? 1304935
科研通“疑难数据库(出版商)”最低求助积分说明 627339
版权声明 601432